

Electromagnetic beam-beam background at SuperB

Joint Belle II & SuperB Background Meeting 9-10 Feb. 2012

University of Technology, Vienna, Austria

Cécile Rimbault, LAL Orsay, IN2P3-CNRS R. Cenci, E. Paoloni, A. Perez, G. Rizzo INFN Pisa

Electromagnetic beam-beam background at SuperB

Tools BDK tuning GP++ fast simulation DIAG36/BDK/GP++ FastSim comparison GP++ full simulation Rough estimation of SVT backgrounds Summary table

Pairs backgrounds in SuperB

- Purpose: Cross-check of DIAG36 cross-section prediction → 7.28 10⁶ nbarn
- Tools:
- BDK : 4 fermions generator (DELPHI)
- F. A. Berends, P. H. Daverveldt, and R. Kleiss, Comput. Phys. Commun. 40, 285 (1986).
 GUINEA-PIG++: C++ version of beam-beam interaction simulation code written by D. Schulte. LL process estimation using Weizsäcker-Williams approximation
 https://trac.lal.in2p3.fr/GuineaPig, versions 1.0.16 & 1.1.1

MC Generators Overview

The generators used in the followings

	Diag36	BDK			
Authors	F.A. BERENDS, P.H. DAVERVELDT, R. KLEISS				
Last update (known by me)	8/2/1985	28/1/1985			
Source	BaBar software repository	Cecile Rimbault (from Delphi software repository)			
Features	All the 36 tree QED diagrams are properly taken into account	Photon - Z0 interference, running coupling constant (vacuum polarization)			

Beam-Beam interaction simulation

Macro-particles replace particles (can be 10^5 Macro $\Leftrightarrow 2 \ 10^{10}$ part)

• Bunches are cut into slices: a slice of one bunch interacts with a slice of the other bunch when they occupy the same transverse plan.

- Slices are moved longitudinally on a 3D grid
- For each slice-slice interaction:
 - Macro-part are distributed on a 3Dim. grid
 - Fields calculation
 - Macro-part are moved according to fields + photons are produced.
 - if photon treatment is asked:
 - photons are distributed and moved on the grid
 - (if asked) pairs are generated and moved....

Approximation: beams are moved along z with a tilted angle

Background in the SVT

- r_{L0} =14mm/30mm, B=1.5T
- Electron travel along helix with a radius of r₀(m)=3.33Pt/B (GeV/T)
- Conditions to hit the SVT: $r_0 \ge r_{SVT}/2$ $300mrad < \theta_0 < pi-300mrad$
- Comparisons made at the generator level

BDK tuning

- Run at 5.3 GeV energy beam, 10K events
- Sensitivity to pair minimal invariant mass square w2min

BDK tuning

Cross-section and background in SVT predictions as function of w2min, constant below 10⁻⁶ GeV2=4m_e²

GP++ fast simulation

Symetrical beams of 5.3 GeV with N=N_B $\sigma_x/\sigma_z\Phi$ =2.6 10⁹ particles and $\sigma_{zeff}=\sigma_x/\Phi$ =244µm 1 slice-slice interaction

2000 runs $\rightarrow L=2.66 \ 10^{33} \ m^{-2} \rightarrow \sigma=(7.7\pm0.4)\ 10^{6} \ nbarn$

Comparison BDK / DIAG36 / GP++FastSim

GP++ simulations comparison

- Is the **fast simulation** enough?
 - Fast Sim with asymmetric beam energies (4.18 & 6.7 GeV)
 - Full Simulation: Entire beam-beam interaction at 66mrad

GP++ simulations comparison

- Is the **fast simulation** enough?
 - Fast Sim with asymmetric beam energies (4.18 & 6.7 GeV)
 - Full Simulation: Entire beam-beam interaction at 66mrad

Beam-Beam Deflection

The low energy pairs seem to be deflected by the field of the oncoming beams even at large angle interaction

Background in the SVT BDK / GPFULL / DIAG36 comparison

Background in the SVT BDK / GPFULL / DIAG36 comparison

Pt distribution of the leptons in $300 \text{mrad} < \theta < \text{pi-}300 \text{mrad}$ and $r_0 > 1.4 \text{cm}$

Background in the SVT

GEANT4 simulation, beam pipe radius=10mm, r_0 =14mm, pairs generated with DIA636

Background in the SVT

GEANT4 simulation, beam pipe radius=10mm, r_0 =14mm, pairs generated with DIAG36

Pair cross-section summary

	Pairs σ (μbarn) / MHz A	σ in dθ (μbarn) / MHz (AxC/B)	σ for r ₀ >1.4cm (μbarn) / MHz (AxC/B)	Nb pairs B	Nb particles in dθ / Pt acceptance C
BDK	7.30 10 ³	3.8 10 ³	6.1 10 ²	10000	5334 / 838
DIAG36	7.30 10 ³	3.8 10 ³	4.2 10 ²	100000	52545 / 5810
GP FullSim @ prod time	7.74 10 ³	4.0 10 ³	2.8 10 ²	30290	15691 / 1096
GP FullSim after deflection	7.74 10 ³	4.2 10 ³	3.8 10 ²	30290	16586 / 1490

Pair cross-section summary

	Pairs σ (μbarn) / MHz A	L0 σ (μbarn) / MHz (AxC/B)	Occupancy , I ₀ =10cm (MHz/cm ²)	ℒ(10 ³⁴ m ⁻²)	Nb pairs B	Nb particles hitting SVT C
BDK	7.30 10 ³	1.59 10² ±0.11 10 ²	1.8	1.37	10000	215
DIAG36	7.30 10 ³	1.50 10² ±0.03 10 ²	1.7	13.7	100000	2054
GP FullSim @ prod time	7.74 10 ³	1.14 10² ±0.20 10 ²	1.3	3.78	30290	450
GP FullSim after deflection	7.74 10 ³	1.17 10² ±0.05 10 ²	1.3	3.78	30290	462

Back-up

Background in the SVT

GEANT4 simulation, beam pipe radius=10mm, r_0 =14mm, pairs generated with DIAG36

Eugenio Paoloni

Tech Board , 3 nov. 2011

- Caveat: different optimization strategies produce very different results.
 - The total cross section predictions by BDK and by Diag36 are at 0.6 per mille agreement among them
 - The differential cross section inside the geometrical acceptance of the detector predicted by Diag36 is 15% larger than that predicted by BDK
 - Work in progress to validate these results against the Guinea Pig ++ code (C++, virtual photon approximation)

