

SuperB Touschek and beam-gas background

M. Boscolo

Joint Belle II & SuperB Background Meeting Vienna, Austria February 9th – 10th 2012

1

Outline

Introduction

- Touschek generator
- Collimation system (horizontal)
- Touschek simulation results for LER & HER
- Beam-gas generator
- Collimation system (vertical)
- Beam-gas simulation results for LER & HER

Introduction

- The main sources of loss rates are under control and secondaries tracked into sub-detectors and their effects evaluated
- In the next months we will freeze lattice design: if needed, we'll update backgrounds simulations, some minor changes are expected
- Present Status on Touschek and beam-gas lifetime & loss rates estimates for
 V12 lattice with *realistic* IR layout from M. Sullivan (optics with the whole ring rematched, PAC11)

Approximations in single beam background simulation

 Approximations in calculating a particular background process are unavoidable

Comparison with actual experience

It is valuable and possibly essential for a successful design to compare our calculational techniques and procedures with data from a real detector at a real storage ring

Acceptable agreement does not assure success, of course, because scaling from one machine to another is not so direct...but it would be a good start.

Simulation tool used for Superb tested at DAFNE: Touschek lifetime measurements vs MC

[M. Boscolo, P. Raimondi, e. Paoloni and A. Perez, IPAC11]

Please refer to paper for more details

- a good agreement between measured and calculated lifetime with scrapers inserted
- the comparison without scrapers shows a disagreement of within a factor 2,

which might be explained by a misalignment of the onenergy beam orbit that induced beam scraping in the IP2 section, as found after these measurements.

We remark that in the simulation the beam is assumed perfectly aligned and centered along the beam vacuum pipe.

In addition, dynamic aperture was not optimized in the machine as well as in the MAD lattice used for calculation.

Simulation tool used for Superb tested at DAFNE: Touschek bkg measurements vs MC

 The data/MC background rates are in agreement within a factor of two in the different regions of the KLOE EmC

EmC Region	Data rates	MC rates	Data/MC
	(MHz)	(MHz)	(MHz)
Barrel	24.7	33.3	0.74
Forward	3.0	1.6	1.87
Backward	37.4	78.0	0.48

• The main features of the **shapes** are well **reproduced**

DAFNE experience (first KLOE run): Effects of non linearities on Touschek particle losses

sextupoles and octupoles relevant to account for the correct DA

The MC reproduces actual behaviour of Touschek background vs sextupoles strengths

DAFNE experience (first KLOE run): Comparison between measured and calculated effectiveness of collimators

The MC reproduces behaviour of background vs collimator position

Scan of the background rate in the KLOE forward calorimeter versus position of the internal jaw of a collimator: The collimator opening is measured from the beam pipe edge.

Touschek energy spectra related mostly to beam parameters (i.e. bunch volume, ε , σ_p , bunch current...)

With a given energy spectrum P(E)we use a uniform extraction in energy and use P(E) as a weight(other possibility is to extract according to P(E))

Particle losses related mostly to
machine parameters/optics
(i.e. physical aperture, phase advance, dispersion, ...)
We cope with tails of both distributions –
(non trivial statistical errors with large weights)

Program Flow Touschek simulation

Optics check

(read MAD output)

(nonlinearities included)

Beam parameters calculation (betatron tunes, emittance, synchrotron integrals, natural energy spread, bunch dimensions, optical functions and Twiss parameters all along the ring)

Calculation of **Touschek energy spectra** all along the ring averaging Tousc. probability density function over 3 magnetic elements

Tracking of Touschek particles:

Start with transverse gaussian distribution and proper energy spectra every 3 elements: track over many turns or until they are lost

Calculation of energy spectra $(2)^2$

Starting formula: Integrated Touschek probability

$$\frac{1}{\tau} = \frac{\sqrt{\pi}r_e^2 cN}{\gamma^3 (4\pi)^{3/2} V \sigma'_x \varepsilon^2} C(u_{\min})$$

 $\frac{1}{\tau} = \int P_{Tou}(E) dE$

$$\varepsilon = \frac{\Delta E}{E} \qquad u_{\min} = \left(\frac{\varepsilon}{\gamma \sigma_x}\right)$$
$$\sigma'_x = \sqrt{\frac{\varepsilon_x}{\beta} + \sigma_p^2 \left(D'_x + D_x \frac{\alpha_x}{\beta_x}\right)^2}$$

V = bunch volume= $\sigma_x \cdot \sigma_y \cdot \sigma_l$ C(umin) accounts for Moller x-section and momentum distribution

For a chosen machine section the Touschek probability is evaluated in small steps (9/element) to account for the beam parameters evolution for 100 ϵ values.

Use an interpolation between the calculated e values according to the Touschek scaling law: $A_1 \cdot e^{-A_2}$

Collimators Modeling

- •Perfectly absorbing collimators
- •No width

collimators assumed perfectly absorbing and infinitely thin

actual behaviour is reproduced but Edge effect is missing

This is a first order approximation, good for Superb, as closest collimator upstream IP is at -20 m.

For DAFNE, short machine, approximation works less well, closest collimator upstream IP is at about -8 m. Refinement to perfectly absorbing model was needed

For DAFNE more realistic collimators modeled

It has been found that most of the particles are scattered by the collimator edge, instead of being absorbed, thereby producing additional background to the experiments.

real collimator shape included in simulation and edge effect has been simulated

Electron interaction: Multiple scattering, Bremsstrahlung, de/dx simulated by a toy MC

About Touschek Simulation

- Calculated lifetime and rates are dependent on the:
 - Lattice energy acceptance
 - physical aperture -elliptical shape
 - Dynamical aperture accounted for with non-linear elements in tracking
- stable results with few (~5) machine turns
- stable results with about 10⁶ macroparticles
 - 500particles x 2 (DE/E>0, DE/E<0) every 3elements out of 2300 (≈0.8e6 tracked)

Parameters used in the IR designs

(Mike Sullivan, Dec. 11)

Parameter	HER	LER
Energy (GeV)	6.70	4.18
Current (A)	1.89	2.45
Beta X* (mm)	26	32 (26)
Beta Y* (mm)	0.253	0.205 (0.274)
Emittance X (nm-rad)	2.00	2.46
Emittance Y (pm-rad)	5.0	6.15
Sigma X (µm)	7.21	8.87
Sigma Y (nm)	36	36
Crossing angle (mrad)	+/- (30

HER Optics: zoom of Final Focus

 $beta_x^* = 2.6cm$ $beta_y^* = 0.27mm$ $beta_x^* = 2.6cm$ $beta_y^* = 0.27mm$

18

SuperB

Physical aperture

circular pipe

everywhere but at IR

- At IR elliptical pipe:
- horizontal

HER / LER Final Focus collimation system

20

Collimators – basic idea

The technical design is not required at this stage of the project

we will address this point in the near future

However, our plan is that they should:

Intercept the Touschek particles in the final focus upstream the IR that otherwise would be lost at the QF1

So, in principle, the good collimators set corresponds to the same Beam Stay Clear , in sigmax units, that we have in the IR

Collimator jaw insertion = 0.9* phys. aperture(QF1) $\sigma_{COL} / \sigma_{QF1}$

in the simulations an optimal position close to this value has been set

Collimators design

- The proposed **horizontal collimation system** results **very efficient** from simulations.
- Idea is to model the beam pipe at the longitudinal positions of the primary horizontal collimators (two hor. Sextupoles) with a horiz. physical aperture corresponding to the one needed for the jaws to efficiently intercept the scattered particles that would be lost at the QF1, and add two movable jaws as a further knob to tune IR backgrounds.

This design has been implemented in **DAFNE** recently for the two most effective scrapers

Touschek IR background rates

|s|< 2 m

HER (e+):

no collimators = 2.5 MHz × 978 bunches = 2.4 GHz/beam with collimators = 6.95 kHz × 978 bunches = 6.8 MHz/beam

Collin	nator set: (mm)	
	internal / external	
Col1	-9 / +12	
Col2	-9 / +25(out)	
Col3	-18 / +12	
Col4	-12 / +18	
(pipe is -25 /+25 mm		

no collimators $\tau_{TOU} = 26$ minutes with collimators $\tau_{TOU} = 22$ minutes

HER v12modif Touschek Trajectories

found by minimizing IR rates and maximizing lifetime real set will be found experimentally

Loss probability of HER Touschek particles as a function on $\Delta E/E$

HER IR losses (|s|< 2 m)

IR rates for the LER

$l_b = 2.5 \text{ mA}$ $\epsilon_x = 2.4 \text{ nm}$

no collimators = 17.2 MHz × 978 bunches = 16.8 GHz/beam with collimators = 93 kHz × 978 bunches = 90 MHz/beam

no collimators $\tau_{TOU} = 610 \text{ s} (10.1 \text{ minutes})$ with collimators $\tau_{TOU} = 470 \text{ s} (7.9 \text{ minutes})$

Collima	ator set: (mm)	
internal / external		
Col1	-10 / +14	
Col2	-10 / +18	
Col3	(out)-25 / +12	
Col4	-12 / +16	

careful study of secondaries into sub-detectors indicated these rates were a bit too high

IR lost particles of the LER

Loss probability of LER Touschek particles as a function on $\Delta E/E$

nt= machine turn number

LER Touschek IR background rates $_{b}=2.5 \text{ mA}$ |S| < 2 m With IBS: $\varepsilon_{x} = 2.4 \text{ nm}$ With a 1.3 IR rates reduction

with collimators = 73.3 kHz/bunch × 978 bunches =72 MHz/bear

with collimators $\tau_{TOU} = 420 \text{ s} (7 \text{ minutes})$

Collimator set: (mm)			
internal / external			
Col1	-9 / +12		
Col2	-10 / +18		
Col3	(out)-25 / +12		
Col4	-12 / +16		

Touschek particles hitting the pipe: full geometry before tracking

Touschek particles hitting the pipe: full geometry before tracking

Zoom within 4 m

LER

Z vs X profile (pipes)

32

Beam-gas scattering

The same MonteCarlo approach as for Touschek simulation is used by substituting the elastic/ inelastic differential cross-section to the Touschek cross-section

Program Flow Beam-gas simulation

Optics check

(nonlinearities included)

Beam parameters calculation (betatron tunes, emittance, synchrotron integrals, natural energy spread, bunch dimensions, optical functions and Twiss parameters all along the ring)

Calculation of **beam-gas Bremsstrahlung scattering probability (or elastic beam-gas scattering)** all along the ring every 5 magnetic elements. Pressure and gas composition can vary along the ring- now constant

Tracking of scattered particles:

Start with transverse gaussian distribution and proper **energy spectra (or divergence distribution)** every 5 elements: track over many turns.

Physical aperture now simply assumed circular with R=2cm except for IR: 1cm at QD0

Estimation of IR and total particle losses (rates and longitudinal position)
Estimation of lifetime

Beam-gas inelastic scattering

usually the gas Bremsstrahlung lifetime is estimated from the integrated cross section

$$\frac{1}{\tau_{\text{Brems}}} = \rho \,\sigma_{\text{inel}}^{\text{N}} \,c$$
with
$$\sigma_{\text{inel}}^{\text{N}} = 4r_{\text{e}}^{2} \,Z^{2} \alpha \frac{4}{3} \left(\ln \frac{183}{Z^{1/3}} \right) \left(\ln \frac{1}{\epsilon_{\text{RF}}} - \frac{5}{8} \right)$$

$$\rho \,\left[m^{-3} \right] = 3.217 \times 10^{22} P \,\left[\text{Torratoms/cm}^{3} \right]$$

c speed light

The number of particles lost dN per unit time is proportional to the cross-section, the number of scattering centres and the number of incident particles.

I compared the simulation results to the gas Bremss. lifetime estimated from this integrated cross section

35

Beam-gas Bremsstrahlung scattering-MC technique

$$\frac{1}{\tau} = \rho \left(\frac{d\sigma}{du} \right) c \qquad \text{frequency of a beam-gas scattering} \\ u = \Delta p/p \qquad \qquad \frac{d\sigma}{du} \text{ differential cross section} \\ \frac{1}{\tau} = \rho c \sum_{L} \begin{pmatrix} u_{max} \\ \int \\ u_{min} \\ du \\ du \\ du \\ L \end{pmatrix} \qquad \qquad \text{frequency of a beam-gas scattering for a tracked particle} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{MC} \text{ between } \sum_{1}^{N_{MC}} \frac{d\sigma}{du} (u_{max} - u_{min}) / N_{MC} \\ \text{MC technique: uniform extraction of } N_{$$

$$\dot{N}(Hz) = \frac{1}{\tau_{ine}} N$$
 rate of losses due to beam-gas scattering for N (particles/bunch)

 τ_{ine} is the calculated beam-gas Bremsstrahlung lifetime

Beam-gas Inelastic scattering

 differential cross section for energy loss from photon emission at the nucleus (Bremsstrahlung):

we consider both nuclear and electrons interactions

$$\frac{d\sigma}{du} = 4\alpha \ r_e^2 \ Z \left(Z+1\right) \ \frac{4}{3u} (1-u+.75u^2) \ln\left(\frac{183}{Z^{1/3}}\right) (4.1)$$

[A. Chao and Tigner Handbook]

[H. DeStaebler]

(4.1a)

like Touschek with $\Delta E/E<0$ for primary electrons

particles undergoing inelastic scattering are lost either for physical/dynamic aperture or for exceeding RF bucket

 $u = \frac{k}{E}$.

Beam-gas elastic scattering- MC technique

frequency of a beam-gas scattering

 $\frac{1}{\tau} = \rho \left(\frac{d\sigma}{d\Omega} \right) c$

multiturn effect, as expected

Nuclear Coulomb differential cross section

betatron oscillation excitation

frequency of a beam-gas scattering for a tracked particle

$$\dot{N}(Hz) = \frac{1}{\tau_{ela}}N$$

 τ_{ela}

rate of losses due to beam-gas scattering for N (particles/bunch)

is the calculated beam-gas elastic lifetime

Elastic beam-gas scattering

differential cross section

$$\frac{d\sigma}{d\Omega} = 4r_e^2 \ Z^2 \frac{\left(\frac{m}{p}\right)^2}{(\theta^2 + \theta_1^2)^2} \ ,$$

 $\theta_1 = \alpha Z^{1/3} \left(\frac{m}{p} \right)$

[A. Chao and Tigner Handbook] [H. DeStaebler]

 $d\Omega = \sin\theta \, d\theta \, d\phi$

The screening of the atomic electrons is accounted for by the angle θ_1 . Any nuclear form factor effects are neglected, which requires $q \approx E\theta < q_{\text{max}} = 137 \text{ m}/A^{1/3}$. The energy lost by the beam particle is $q^2/2A$ which can safely be neglected.

Beam-gas bkg –general considerations

 Particle losses expected vertically, at the QD0 beam pipe is assumed circular all along the ring But at the IR:

Beam-gas is very much dependent on how good vacuum is:

P=1nTorr constant up to now,

different pressures along ring, especially at IR, planned

Vertical COLLIMATORS in the Final Focus

To be added to the Horizontal ones, placed to intercept Touschek scattered particles

Following the same criteria used for horizontal collimators:

Vertical Collimators upstream the IR

Intercept the scattered particles in the final focus upstream the IR that otherwise would be lost at the QD0

Collimator jaw insertion = 0.9* phys. aperture(QD0) $\sigma_{COL} / \sigma_{QD0}$

IR losses are greatly reduced by these Vertical collimators placed with this criteria

Reshaping of Beam pipe as collimators

A vertical beam pipe at the longitudinal position where the vertical Collimator should be placed (Vertical Sextupoles) could be modeled by the same aperture needed to collimate particles that would be lost at the QD0, and add two movable jaws as a further knob to tune IR backgrounds.

HER Beam-gas Coulomb scattering

P = 1 nTorr constant along ring, Z = 8

HER	τ (s)	IR losses/beam	
no collimators	4590	10.5 GHz	About a factor 950 in
with vertical Collimators	3040	3.7 MHz	IR losses ↓ reduction

no collimators =10.8 MHz/bunch × 978 bunches=10.5GHz/beam with collimators = 3.8 kHz/bunch × 978 bunches= 3.7 MHz/beam

44

Collimato	r set: (mm)	
in	ternal / external	
HCol1	-9 / +12	
HCol2	-9 / +25(out)	Set of values optimized for Touschek
HCol3	-18 / +12	
HCol4	-12 / +18	
VCol1	-4.5 / +4.5	
VCol2	-4.5 / +4.5	

Coulomb particles hitting the pipe: full geometry before tracking

HER IR within 15 m

Z vs X profile (pipes)

Coulomb particles hitting the pipe: full geometry before tracking

HER

Zoom: IR within 4 m

Z vs X profile (pipes)

LER Beam-gas Coulomb scattering

P = 1 nTorr constant along ring, Z = 8

LER	τ (s)	IR losses/beam	
no collimators	2520	25 GHz	About a factor 700 in
with vertical Collimators	2350	36 MHz	IR losses

10 collimators = 26 MHz/bunch × 978 bunches =25.4 GHz/beam with collimators = 36.7 kHz/bunch × 978 bunches=36 MHz/beam

Collimat	or set: (mm)
	internal / external
HCol1	-10 / +14
HCol2	-10 / +18
HCol3	(out)-25 / +12
HCol4	-12 / +16
VCol1	-6 / +6
VCol2	-6 / +6

There is margin of further IR rate reduction, As for the HER, Vcol set may be re-checked if secondaries not satisfactory (we still have margin in lifetime) 47

Coulomb scattered particles lost at IR

Trajectories of scattered particles eventually lost at IR

48

Coulomb beam-gas scattering

3D plot: scattered particles hitting the pipe

Lifetime summary

	HER	LER
Touschek lifetime	τ _{του} (min)	τ _{του} (min)
No collimators, nominal $\boldsymbol{\epsilon}_{x}$ (no IBS)	26	7.4
No collimators, $\boldsymbol{\epsilon}_{x}$ with IBS	26	10.2
With Collimators, ϵ_x with IBS	22	7
Coulomb	50 min	39 min

72 hrs

77 hrs

Bremsstrahlung

IR rates summary

|s|<2 m

Touschek	HER	LER
No collimators, ε_x with IBS	2.4 GHz	17 GHz
With Collimators, $\epsilon_{\rm x}$ with IBS	6.8 MHz	72 MHz

Coulomb No collimators, ε_x with IBS	10.5 GHz	25 GHz
Coulomb with collimators, ϵ_x with IBS	3.7MHz	36 MHz
Bremsstrahlung with coll	130KHz	450KHz

Conclusions

- Monte Carlo for Touschek lifetime and backgrounds is a solid simulation tool
- Background rates at IR are under control with an efficient Horiz & vert. Collimation system in the Final Focus
- More beam-gas simulation studies under variable pressure along ring are on the way
- Technical Design of realistic collimators is planned

back-up

Dafne lifetime measurements

IPAC11

Red: SIMULATION Blue: Measurement

Measured (blue dots) and predicted (red squares) electron beam lifetime vs bunch current, with K=0.4%.

Modif. V12 HER Touschek Lifetime

V12 lattice+ more realistic aperture	τ _{του} (min)	
No collimators	26	
Optimal set of horizontal Collimators	22	J

~1.2 lifetime reduction to greatly reduce IR losses

Modif. V12 LER Touschek Lifetime

collimators setting	$\epsilon_x^{}$ (m rad)	τ _{TOU} (s)	τ _{του} (min)	
No collimators	1.8e-9 , no IBS	447	7.4	
No collimators	2.4e-9, with IBS	611	10.2	
With collimators	2.4e-9, with IBS	420	7	

~ 1.45 lifetime reduction to greatly reduce IR losses

CDR and CDR2

CDR

Table 3-17. <i>Touscnek Deam metime summ</i>

Parameter set	Luminosity	Lifetime HEB	Lifetime LEB
	$\left(\mathrm{m}^{-2}\mathrm{s}^{-1}\right)$	(\min)	(\min)
Nominal	$1.0 imes 10^{36}$	38	5.5
Upgrade	2.44×10^{36}	19	3

Touschek lifetime [min]	HER	LER
No collimators, $\boldsymbol{\epsilon}_{x}$ including IBS	40.0	7.8
No collimators, nominal ϵ_x (no IBS)	39.8	5.9
Optimal set of Collimators, $\epsilon_{\rm x}$ including IBS	33.2	6.6

CDR2

 Table 3-16.
 Nominal SuperB beam parameters.

	HER	LER
Beam Energy (GeV)	7	4
Bunch length (mm)	6	6
Energy spread (%)	0.1	0.1
Horiz. emittance (nm)	1.6	1.6
Vertic. emittance (pm)	4	4
Energy acceptance (% $\Delta p/p)$	1	1
β_x avg. (m)	10	10
β_y avg. (m)	22	22
ppb	3.52×10^{10}	6.16×10^{10}

V12 parameters	HER	LER
Beam Energy (GeV)	6.7	4.18
Bunch length (mm)	5	5
Nominal horizontal emittance (nm)	1.97	1.80
Horiz. emittance (nm) including IBS	2.00	2.46
Coupling (%)	0.25	0.25
Particles/bunch	5.08 × 10 ¹⁰	6.56 × 10 ¹⁰