The Rad-Bhabha background simulation for SuperB

Alejandro Pérez Pérez INFN – Sezione di Pisa On behalf of the SuperB Collaboration

Outline

- Backgrounds from radiative Bhabha (Rad-Bhabha) events
- The Rad-Bhabha event generator for SuperB: BBBREM
- The final focus:
 - Geometrical model
 - Beam-line magnetic model
- Losses at the beam-pipe due to Rad-Bhabha
- Summary

- Rad-Bhabha is one of the main background sources for SuperB
- Background: off-energy particles hit beam-pipe downstream and debris go into the detector
- Accurate evaluation requires a careful modelling of the final focus
 - Geometrical model: beam-pipe, magnets, shields, cryostat, …
 - Magnetic model: field from the different elements along the beam-line

- Rad-Bhabha is one of the main background sources for SuperB
- Background: off-energy particles hit beam-pipe downstream and debris go into the detector
- Accurate evaluation requires a careful modelling of the final focus
 - Geometrical model: beam-pipe, magnets, shields, cryostat, …
 - Magnetic model: field from the different elements along the beam-line

- Rad-Bhabha is one of the main background sources for SuperB
- **Background: off-energy particles hit beam-pipe downstream and** debris go into the detector
- Accurate evaluation requires a careful modelling of the final focus
 - Geometrical model: beam-pipe, magnets, shields, cryostat, ...
 - Magnetic model: field from the different elements along the beam-line

BBBREM event generator

Use BBBREM to generate the Rad-Bhabha primaries

R. Kleiss and H. Burkhardt, arXiv: hep-ph/9401333

Features:

- Correct simulation of the angular deflection of the outgoing leptons and photons
- Correct simulation of the luminous region shape and size

Parameters:

- ROOTS: total incoming CM energy
- RK0: radiated photon energy cut-off fraction
- NEVENT: number of events
- NRAN: flag for source of random number (fixed to 2 for simple additive quasi-random number algorithm)
- Beams parameters (HER/LER) at the IP

HER(e+)

6.69

7.33

26.0

36.0

253.0

5.0

0.1

-30

E(GeV)

σ(X)(μm)

 $\beta(X)(mm)$

 $\sigma(Y)(nm)$

 $\beta(\mathbf{Y})(\mu \mathbf{m})$

 $\sigma(Z)(mm)$

ΔΕ/Ε (%)

 $\alpha_{(mrad)}$

LER(e-)

4.18

8.70

32.0

35.0

205.0

5.0

0.1

+30

6

Alejandro Pérez Pérez, Joint Belle-II & SuperB Background Workshop, Vienna Feb. 10th 2012

Alejandro Pérez Pérez, Joint Belle-II & SuperB Background Workshop, Vienna Feb. 10th 2012

Final Focus (FF) Geometrical Model

Pipes

- Detailed Geant4 (Bruno) model of the FF from -16 to 16 mts from IP
 - Beam pipes

Al

- Super-conducting magnets and cryostat
- Stoppers: tungsten/Lead shield near by IP

Final Focus (FF) Geometrical Model

- Detailed Geant4 (Bruno) model of the FF from -16 to 16 mts from IP
 - Beam pipes
 - Super-conducting magnets and cryostat
 - Stoppers: tungsten/Lead shield near by IP
 - Magnetic fields

Final Focus (FF) Geometrical Model

Beam-line Magnetic Model

- Magnetic model directly extracted from MAD simulation from Mike Sullivan
- Features:
 - Dipoles and Quadrupoles are perfect (no higher order components)
 - Fields modelled only inside cylinders, zero elsewhere (no fringing effects)

Alejandro Pérez Pérez, Joint Belle-II & SuperB Background Workshop, Vienna Feb. 10th 2012

Beam-line Magnetic Model

- Magnetic model directly extracted from MAD simulation from Mike Sullivan
- Features:
 - Dipoles and Quadrupoles are perfect (no higher order components)
 - Fields modelled only inside cylinders, zero elsewhere (no fringing effects)

Rad-Bhabha Losses at the Beam-pipe

Evaluate the rate at which particles are lost at the beam-pipe due to Rad-Bhabha to understand backgrounds

Assumptions:

- Luminosity (L) = 10^{36} cm⁻²s⁻¹ = 10^{9} mb⁻¹ Hz
- RK0 = 10% \Rightarrow cross-section (σ) = 152 mb
- Bunch-crossing frequency $(f_{c}) = 226.73 \text{ MHz}$
- N-interactions/bunch-crossing = $(L \times \sigma)/f_{c} = 669.6$
- Losses near by the IP (-3 to 3 mts) are mainly due to off-energy electrons and positrons (E < 1.5 GeV)

⇒ rate ~ 17.7 GHz

- Losses far away IP (> 3 mts) are due to
 - Slightly off-energy electrons/positrons
 - Radiated photon: moves straight and hits beam-pipe at the 1st bend (main contribution by a factor of 4)

\Rightarrow rate ~ 230.0 GHz (main contribution beyond 8mts)

Alejandro Pérez Pérez, Joint Belle-II & SuperB Background Workshop, Vienna Feb. 10th 2012

Rad-Bhabha Losses at the Beam-pipe: rad-y

Rad-Bhabha Losses at the Beam-pipe: rad-y

V12-sf11 layout: HER = e⁺ (6.69 GeV) and LER = e⁻ (4.18 GeV)

Rad-Bhabha Losses at the Beam-pipe: rad-y

V12-sf11 layout: HER = e⁺ (6.69 GeV) and LER = e⁻ (4.18 GeV)

Rad-Bhabha Losses at the Beam-pipe

Total rates around the IP (-3 to 3 mts)

HER			LER		
positron rates			electron rates		
E range (GeV)	Rate (GHz)	E range	(GeV)	Rate (GHz)	
0.0 - 1.0	4.735	0.0 -	1.0	7.863	
1.0 - 2.0	2.789	1.0 -	1.5	2.289	
2.0 - 3.0	0.025	1.5 –	2.0	0.031	
3.0 – 4.0	0.003	2.0 -	2.5	0.007	
4.0 - 5.0	0.003	2.5 –	3.0	0.004	
5.0 - 6.0	0.003	3.0 -	3.5	0.005	
6.0 - 7.0	0.005	3.5 –	4.2	0.003	
0.0 - 7.0	7.563	0.0 -	4.2	10.202	

Summary

- Rad-Bhabha is one of the main background contributions for SuperB detector
- Accurate evaluation needs a careful model of material and magnetic fields inside the final focus (Fully detailed Geant4 model)
- Use BBBREM generator for primaries. Features
 - Angular deflection of outgoing particles
 - Luminous region
- Evaluate loss rates at the beam-pipes to better understand this background

Alejandro Pérez Pérez, Joint Belle-II & SuperB Background Workshop, Vienna Feb. 10th 2012

	Cross section	Evt/bunch xing	Rate
Radiative Bhabha	~340 mbarn (Eγ/Ebeam > 1%)	e ~850 e ⁺	0.3THz
e⁺e⁻ pair production	~7.3 mbarn	~18	7GHz
e ⁺ e ⁻ pair (seen by L0 @ 1.5 cm)	~0.3 mbarn	~0.8	0.3GHz
Elastic Bhabha	O(10 ⁻⁴) mbarn (Det. acceptance)	~250/Million	100KHz
Υ(4S)	O(10 ⁻⁶) mbarn	~2.5/Million	I KHz
	Loss rate	Loss/bunch pass	Rate
Touschek (LER)	I 4kHz / bunch (+/- 2 m from IP)	~7/100	I4 MHz

V12 SF11 Final Focus

V12 SF11 nominal trajectories

- Beam pipe design only up to ~2m from IP
- After that only have beam envelop (10× σ_x and 10× σ_y beam sizes) up to ±16m from IP
- Essentially two horizontal tilt before 1st bend:
 - 30mrad near IP (Z < 0.6m)
 - 27 mrad up to 1st bend
- Will try to use two straight sections for the beam pipe modeling

Alejandro Pérez, SuperB XVII workshop, MDI parallel session May 31th 2011

V12 SF11 nominal trajectories

Geometrical model of beam-pipe at bending

Previously:

- Pipes inside bending magnets modelled as torus
- Forus gives some navigation problems when testing geometry with Geant4
- Currently:
 - Pipes inside bending magnets are modelled as the union of straight pipe sections (5) that follows the bending curvature

