

Touschek Background Simulation

Y. Ohnishi

JOINT BELLE II & SUPERB BACKGROUND MEETING

VIENNA, AUSTRIA 9-10 FEBRUARY 2012

Piwinski's Formula

A. Piwinski, DESY 98-179, 1998

• Local loss rate:

$$\begin{aligned} r(\epsilon_a, B1, B2) &= \frac{r_e c N^2}{4\sqrt{\pi}\gamma^2 \sigma_z \sqrt{\sigma_x^2 \sigma_y^2 - \sigma_\delta^4 \eta_x^2 \eta_y^2}} G(\epsilon_a, B_1, B_2) \\ G(\epsilon_a, B_1, B_2) &= \sqrt{B_1^2 - B_2^2} \int_{k_a}^{\pi/2} \left\{ \frac{(2\epsilon + 1)^2}{\epsilon} \left(\frac{\epsilon/\epsilon_a}{1 + \epsilon} - 1 \right) + \epsilon - \sqrt{\epsilon\epsilon_a (1 + \epsilon)} \right. \\ &- \left(2 + \frac{1}{2\epsilon} \right) \ln \frac{\epsilon/\epsilon_a}{1 + \epsilon} \right\} e^{-B_1 \epsilon} I_0(B_2 \epsilon) \sqrt{1 + \epsilon} dk \end{aligned}$$

$$\epsilon = (\beta \delta)^2 \quad k \equiv \tan^{-1} \sqrt{\epsilon} \qquad \delta = \frac{\Delta p}{p_0} \qquad B_1 = B_1(\varepsilon_x, \varepsilon_y, \beta_x, \beta_y, \eta_x, \eta_y, \sigma_\delta) \\ B_2 = B_2(\varepsilon_x, \varepsilon_y, \beta_x, \beta_y, \eta_x, \eta_y, \sigma_\delta)$$

• Loss rate:

$$R(\epsilon_a) = \frac{1}{L_{circ}} \oint r(\epsilon_a, B_1, B_2) ds \qquad \frac{dN}{d\tau} = -\frac{N}{\tau} = -R(\epsilon_a)$$

• Momentum dependence:

$$\frac{\partial r(\epsilon_a, B_1, B_2)}{\partial \delta_a} = \frac{\partial r(\epsilon_a, B_1, B_2)}{\partial \epsilon_a} \frac{\partial \epsilon_a}{\partial \delta_a} \qquad \epsilon_a \sim \delta_a^2 \quad = \text{(momentum aperture)}^2$$

Bruck's Formula

• Non-relativistic and flat-beam approximation for Piwinski's formula is consistent with Bruck's formula.

$$r(u_a, \varepsilon_x, \beta_x, \eta_x, \varepsilon_y, \beta_y) = \frac{r_e^2 c \beta_x N^2}{8\pi \gamma^3 \beta \sigma_{x\beta} \sigma_{y\beta} \sigma_z \sigma_x u_a} C(u_a)$$
$$C(u_a) = -\frac{3}{2} e^{-u_a} + \int_{u_a}^{\infty} \left(1 + \frac{3}{2} u_a + \frac{u_a}{2} \ln \frac{u}{u_a}\right) e^{-u} \frac{du}{u}$$
$$u_a = \left(\frac{\delta_a \beta_x}{\gamma \sigma_{x\beta}}\right)^2$$

Comparisons

Bruck's and Piwinski's formula

Good agreement within ~20 % for δ_a < 12 %

Tracking Simulation + Analytic Formula

- Macro particles for $\delta_i = \sigma_{\delta} n_z$ ($n_z = -100, -99, -98, ..., 0, ..., +99, +100$)
- initial orbit : x = 0, $p_x = 0$, y = 0, $p_y = 0$, z = 0 for all macro particles : $(x, p_x, y, p_y, z, \delta)$ for particle tracking in *SAD*
- Scattered position is an entrance of the component in the ring. We change the scattered position one by one in the whole ring, then we check the particle orbit whether within the aperture or not.
- Tracking is performed within 5 turns (to save computing time).
- The scattered probability is calculated by Bruck's formula.
- Loss at each position is obtained by integration of the tracking result multiplies the loss rate based on the scattered probability.
- Lattice error is included as sextupole misalignments to generate reasonable XY couplings. No DA optimization with error.

Lifetime Estimation

• Estimation of Touschek lifetime based on the dynamic aperture

Starting point of the tracking is IP. No physical aperture except for the final focus magnets

LER

HER

The shape of the phase space is not a circle.

Lifetime depends on the lattice optimization.

Horizontal Mask

• Mask aperture:

$$d_x(s) = \max\left(\sqrt{\frac{\beta_x(s)}{\beta_{x,QC}}}a_{x,QC}, \eta_x(s)\delta_a, n_{x,max}\sqrt{\varepsilon_x\beta_x(s)}\right)$$
$$d_y(s) = \max\left(\sqrt{\frac{\beta_y(s)}{\beta_{y,QC}}}a_{y,QC}, \eta_y(s)\delta_a, n_{x,max}\sqrt{\kappa\varepsilon_x\beta_y(s)}\right)$$
$$\delta_a = n_{z,max}\sigma_\delta$$

 a_x = Radius of QC2 (second final focus a_y = Radius of QC1 (first final focus)

	LER	HER	
n _{z,max}	22	15	
$n_{x,max}$	30	22	

Vertical Mask

 Mask position is determined by the smallest aperture (final focus magnet). The betatron oscillation is induced by:

$$y_{\beta}(s) = m_{11}\eta_y(s_0)\delta + m_{12}\eta_{py}(s_0)\delta$$

s₀: source point η: dispersion

Loss Rate in LER

Loss in LER

LER Touschek (total ring)

Movable Masks

Loss at IR (LER)

LER 1604

LER Touschek

LER Touschek (contd.)

Vertically lost at z=-1m

Source of Loss Particles for Vertical Direction

FUJI (opposite of IP)

If QC1 is a narrow aperture, these particles are lost at QC1.

Touschek Effect in LER

IR loss is single-pass.

Momentum Aperture

mask aperture	$n_{z,max} = 22$ $n_{x,amx} = 30$	$n_{z,max} = 24$ $n_{x,amx} = 30$	$n_{z,max} = 22$ $n_{x,amx} = 40$		
H1	12.449	13.581	12.449	mm]↑
H2	12.421	13.550	12.421	mm	1 lifetime
H3	12.449	13.581	12.449	mm	sensitive
H4	12.391	13.518	12.391	mm	
H5	10.630	11.597	13.328	mm	
H6	20.284	20.284	26.102	mm	
H7	17.925	17.925	23.067	mm	
H8	17.538	19.133	17.538	mm	
H9	11.898	12.520	15.311	mm]←BG sensitive
V1	2.600	2.600	2.600	mm	
Rate in IR	0.218	1.566	5.014	GHz	
IR loss (W)	0.140	0.996	3.186	W	
lifetime	265	312	269	sec	

IR means -4 m < s < 4 m.

Loss Rate in HER

Loss in HER

HER Touschek (total ring)

Movable Masks

Only H9 mask is effective.

Loss at IR (HER)

HER Touschek

HER Touschek (contd.)

Touschek Effect in HER

#turns

#turns

IR loss is single-pass.

Summary

- Comparison between Piwinski's and Bruck's formula
 - Consistent within ~20 % for the practical region
- Vertical mask is necessary in LER.
 - There is a vertical dispersive region in opposite of IP
 - Otherwise, the loss rate in IR will be more than a few GHz.
- Mask aperture affects both lifetime and IR loss.
 - Still need to optimize aperture for each mask.
 - H1 & H4 might be narrow in LER (in this study).
 - Even though the simulation, the mask tuning has a similar difficulty to that at a real physics run. Not simple !

Opposite of IP in HER

Bjorken-Mtingwa Formula

J.D. Bjorken, K. Mtingwa, FERMILAB-Pub-82/47-THY, 1982 K. Kubo, K. Oide, PRST-AB. Vol4, 124401, 2001

- Ready for generalizing for coupled beams between xy, yz, and zx coordinates
- Numerical calculations such as emittance growth by using the beam-envelope method are applicable.
- A rate of Møller scattering between (p1,p2)->(p1',p2'):

$$\frac{dN}{dt} = \frac{1}{2} \int d^3x \rho(x, p_1) \rho(x, p_2) \int \frac{m d^3 p p_1'}{(2\pi)^2 E_1'} \int \frac{m d^3 p_2'}{(2\pi)^2 E_2'} \frac{m^2}{E_1 E_2} |M|^2 (2\pi)^4 \delta^4(p_1' + p_2' - p_1 - p_2)$$

 $|M|^2 \sim (4\pi\alpha)^2 \left\{ \frac{1}{q^4} - \frac{3}{4q^2(p_1 - p_2)^2} \right\} \sim (4\pi\alpha)^2 \frac{1}{q^4} \longleftarrow \begin{array}{l} \text{non-relativistic scattering angle} \\ \text{small scattering angle} \end{array}$

• Emittance growth can be calculated by this equation.