The soft wall model at the LHC

Antonio Delgado University of Notre Dame

- I. Introduction: the soft wall model
- 2. KK modes: masses and localizations
- 3. Signals for neutral bosons: $G^{(n)}$, $A^{(n)}$ & $Z^{(n)}$
- 4. Signals for charged bosons: W⁽ⁿ⁾
- 5. Conclusions

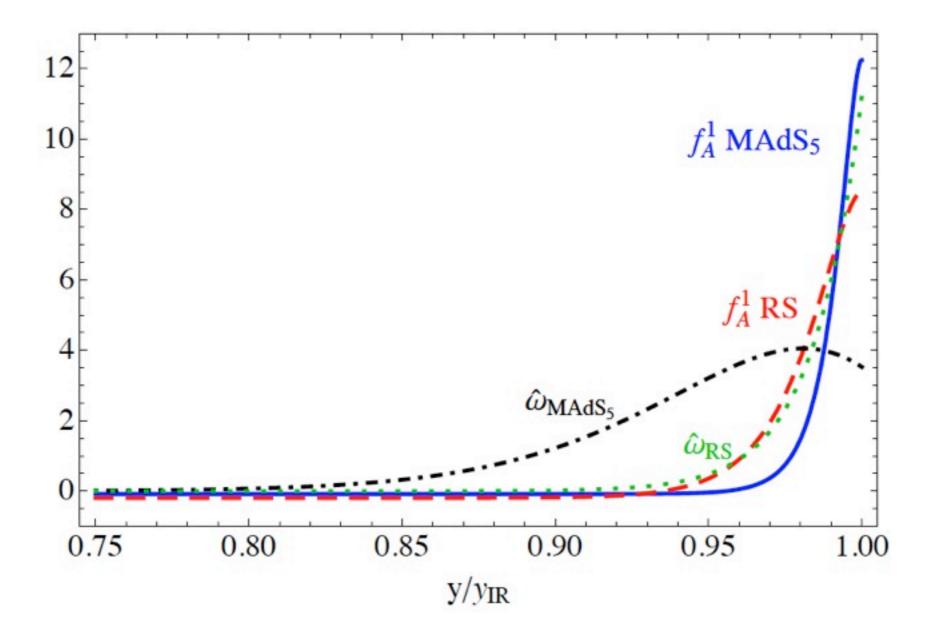
Work done in collaboration with:
Jorge de Blas, Bryan Ostdiek and Alejandro de la Puente arXiv:1206.0699 [hep-ph]

 One possible solution for the hierarchy problem is a warped model that appears in soft-wall scenarios (MAdS₅):

$$ds^{2} = e^{-A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^{2}$$
$$A(y) = ky - \frac{1}{\nu^{2}} \log \left(1 - \frac{y}{y_{s}}\right)$$
$$\nu \in \mathbb{R} \qquad y_{s} > y_{1}$$

• There is a singularity at ys outside the physical region

KK modes: masses and localizations


- One performs the usual decomposition on KK modes taking into account the geometry and the background for the Higgs.
- It can only be done numerically.

Cabrer, von Gersdorff, Quiros

$$H(x,y) = \frac{1}{\sqrt{2}} e^{i\chi(x,y)} \begin{pmatrix} 0 \\ h(y) + \xi(x,y) \end{pmatrix}$$

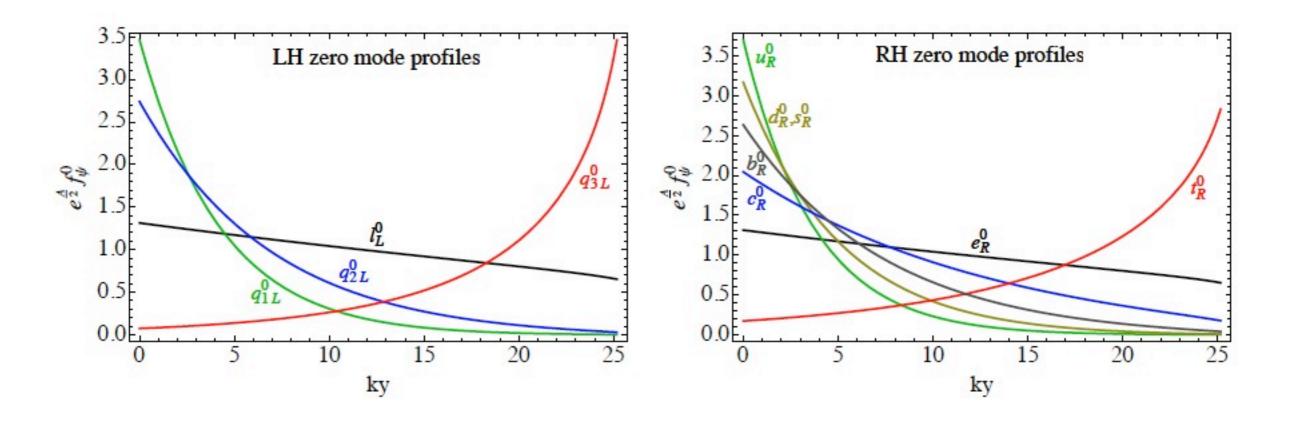
a controls the localization

$$h(y) = c_1 e^{aky} \left(1 + c_2 \int_0^y dy' e^{4A(y') - 2aky'} \right)$$

 Localization of the A^(I) and Higgs, the overlap between KK modes and the Higgs is smaller than RS. That will imply a smaller coupling between zero modes and KK modes.

 In turn that will mean smaller contributions to S,T & U

No need for SU(2)_R


BenchMark	kL_1	ky_1	(ky_s)	ν	a	$M_{KK}[{ m TeV}]$
1	0.3	25	(26.3)	0.55	2.8	2.4
2	0.4	28	(29.6)	0.64	2.5	4.0
3	0.5	30	(31.7)	0.73	2.4	5.2

• Fermionic modes are chosen in the following way:

$$egin{array}{lll} c_{(u,d)_L} = 0.71 & c_{(c,s)_L} = 0.63 & c_{(t,b)_L} = 0.39 \\ c_{u_R} = 0.74 & c_{c_R} = 0.57 & c_{t_R} = 0.42 \\ c_{d_R} = 0.68 & c_{s_R} = 0.67 & c_{b_R} = 0.62 \\ \end{array}$$

To avoid FCNC:

$$c_{(\ell,\nu_{\ell})_L} = c_{\ell_R} = 0.52, \ \ell = e, \mu, \tau$$

Signals for neutral bosons: $G^{(n)}$, $A^{(n)}$ & $Z^{(n)}$

- We are going to analyze the different potential signals for the LHC.
- The model is implemented using FeynRules
- CTEQ6L1 is used for PDFs
- We use MadGraph 5 to calculate the different cross sections.
- We stay at the parton level.

Decay widths of A_{kk} & Z_{kk}:

Decay	Width	Branching
channel	[GeV]	Ratio
$t\overline{t}$	9.938	0.563
W^+W^-	5.453	0.309
$b\overline{b}$	1.751	0.099
$u\overline{u}$	0.157	0.009
$c\overline{c}$	0.152	0.009
$d\overline{d}$	0.039	0.002
$s\overline{s}$	0.039	0.002
e^+e^-	0.037	0.002
$\mu^+\mu^-$	0.037	0.002
$ au^+ au^-$	0.037	0.002
Total	17.641	

Decay channel	Width [GeV]	Branching Ratio
$b\overline{b}$	15.960	0.493
$t\overline{t}$	11.460	0.354
W^+W^-	2.337	0.072
Z h	1.847	0.057
$d\overline{d}$	0.179	0.006
$s\overline{s}$	0.179	0.006
$u\overline{u}$	0.140	0.004
$c\overline{c}$	0.138	0.004
$ u \overline{ u}$	0.074	0.002
e^+e^-	0.012	$4 \cdot 10^{-4}$
$\mu^+\mu^-$	0.012	$4 \cdot 10^{-4}$
$ au^+ au^-$	0.012	$4 \cdot 10^{-4}$
Total	32.352	

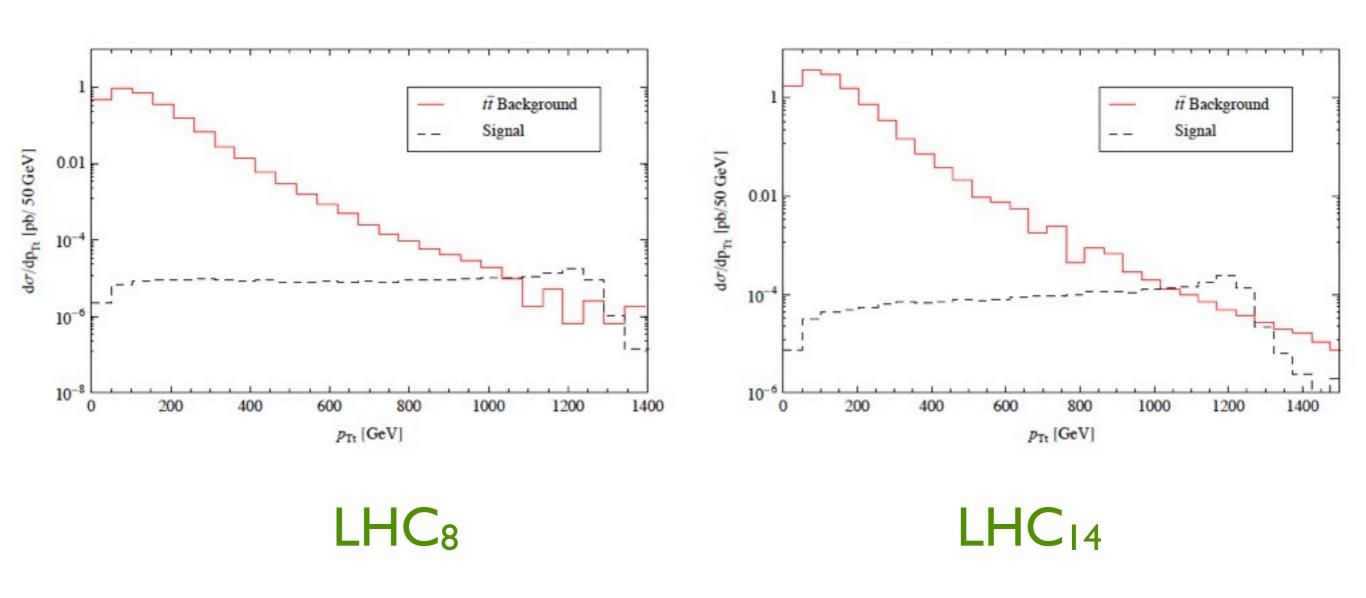
 \boldsymbol{A}_{kk}

• Hadronic final states, we have to consider also the G_{kk} :

 $M_{kk} = 2.4 \text{ TeV}$

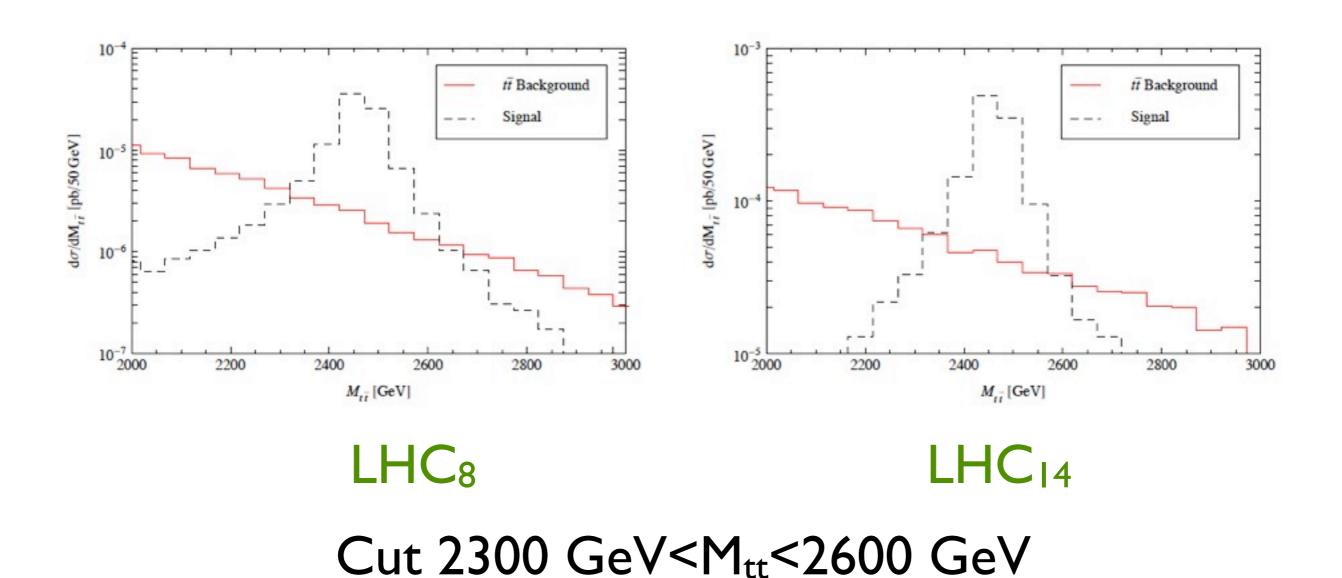
Decay channel	Width [GeV]	Branching Ratio
$t\overline{t}$	40.72	0.566
$b\overline{b}$	28.70	0.399
$u\overline{u}$	0.645	0.009
$d\overline{d}$	0.645	0.009
$S\overline{S}$	0.644	0.009
$c\overline{c}$	0.622	0.009
Total	71.979	

• t t-bar is the most promising case.


• The process:

$$p p \to \{G_{KK}, A_{KK}, Z_{KK}\} \to t \bar{t}$$

	$\sqrt{s} = 8 \text{ TeV}$		$\sqrt{s} = 14 \text{ TeV}$
X	$\sigma(pp \to X \to t\bar{t})[pb]$	X	$\sigma(pp \to X \to t\bar{t})[pb]$
A_{KK}	$1.28 \cdot 10^{-4}$	A_{KK}	$1.68 \cdot 10^{-3}$
Z_{KK}	$8.79 \cdot 10^{-5}$	Z_{KK}	$1.32 \cdot 10^{-3}$
G_{KK}	$1.11 \cdot 10^{-2}$	G_{KK}	0.118
All	$1.12\cdot 10^{-2}$	All	0.121


It is even promising for LHC8

• The main background is t-t bar production:

Cut P_{Tt}>800 GeV

Distributions of M_{tt}:

• After implementing the cuts we get the following significance:

8 TeV	Basic		$M_{t\bar{t}}$ [T \in [2300,	[eV] 2600]
$10 \; {\rm fb^{-1}}$	$N_{ m Events}$	$\frac{S}{\sqrt{B}}$	Events	$\frac{S}{\sqrt{B}}$
G_{KK}, A_{KK}, Z_{KK} SM	51 80	5.7	45 8	15.9

14 TeV	Basi	ic	$M_{t\bar{t}} [\text{TeV}]$ $\in [2300, 2600]$		
$10 \; {\rm fb^{-1}}$	$N_{ m Events}$	$\frac{S}{\sqrt{B}}$	Events	$\frac{S}{\sqrt{B}}$	
G_{KK}, A_{KK}, Z_{KK} SM	672 1025	21.0	605 163	47.4	

Signals for charged bosons: W⁽ⁿ⁾

Decay	Width	Branching
channel	[GeV]	Ratio
$t\overline{b}$	33.570	0.732
W^+Z	5.764	0.126
W^+H	5.679	0.124
$u\overline{d}$	0.351	0.008
$c\overline{s}$	0.350	0.008
$e^+\nu_e$	0.038	$8 \cdot 10^{-4}$
$\mu^+ \nu_{\mu}$	0.038	$8 \cdot 10^{-4}$
$ au^+ u_ au$	0.038	$8 \cdot 10^{-4}$
$c\overline{d}$	0.019	$4 \cdot 10^{-4}$
$u\overline{s}$	0.019	$4 \cdot 10^{-4}$
$c\overline{b}$	$6 \cdot 10^{-5}$	$1 \cdot 10^{-6}$
$t\overline{s}$	$6 \cdot 10^{-5}$	$1 \cdot 10^{-6}$
$t\overline{d}$	$1 \cdot 10^{-5}$	$2 \cdot 10^{-7}$
$u\overline{b}$	$4 \cdot 10^{-6}$	$8 \cdot 10^{-8}$
Total	45.866	

Decay width of W_{KK} with M=2.4 TeV

Possible channels:

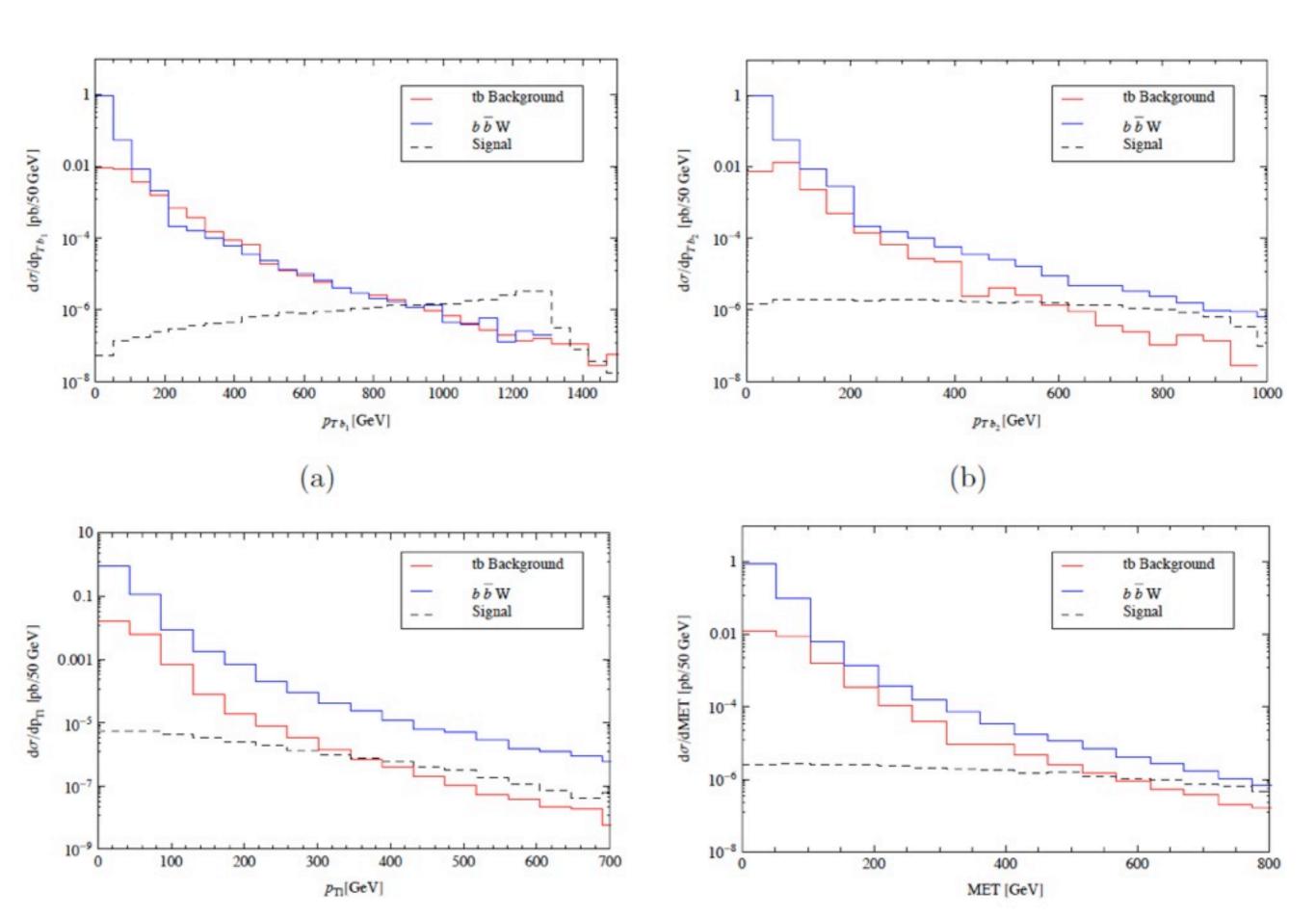
$$pp \to W_{KK} \to b\bar{b}\ell\nu_{\ell}$$

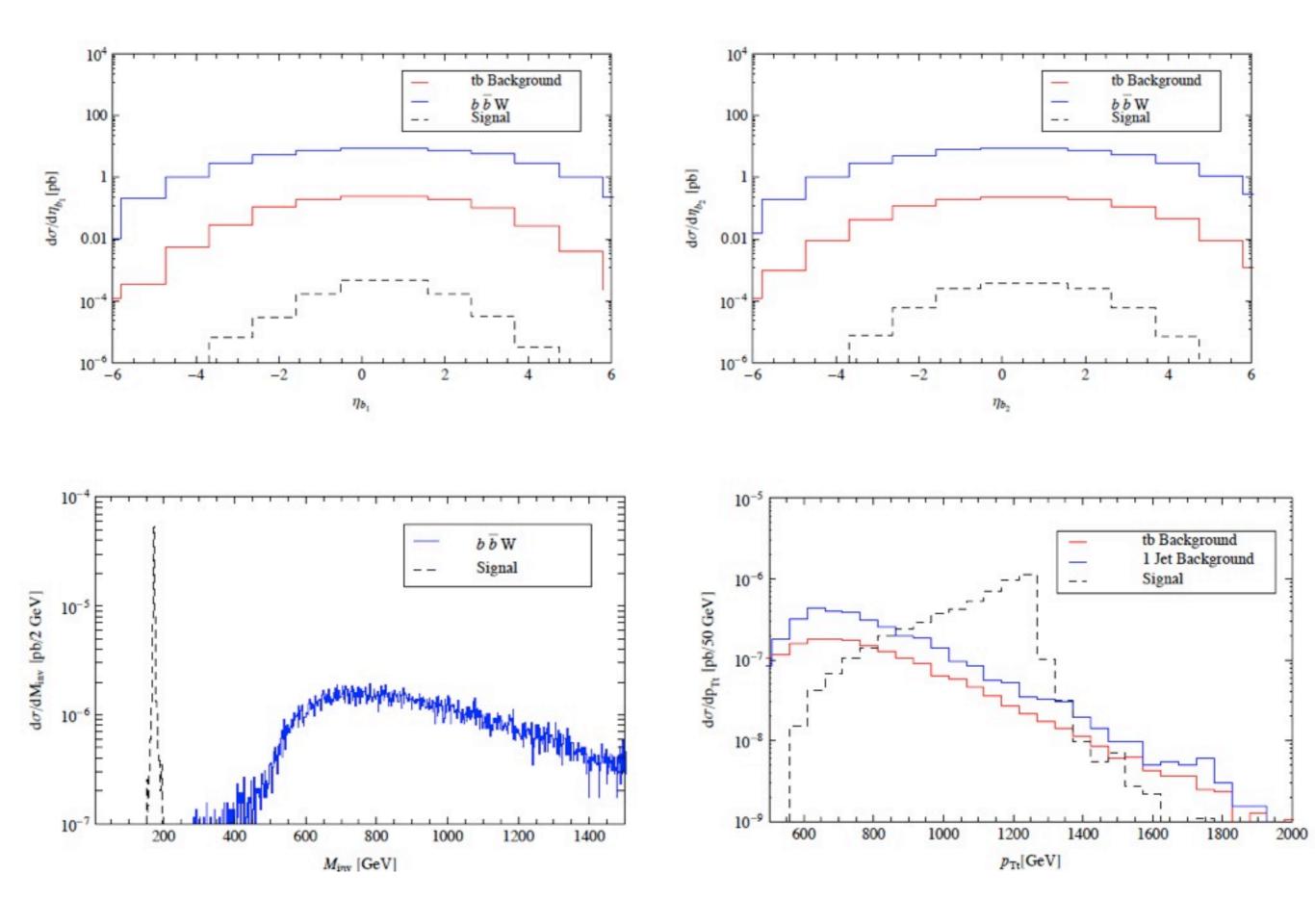
 $pp \to W_{KK} \to \ell\ell\ell\nu_{\ell}$

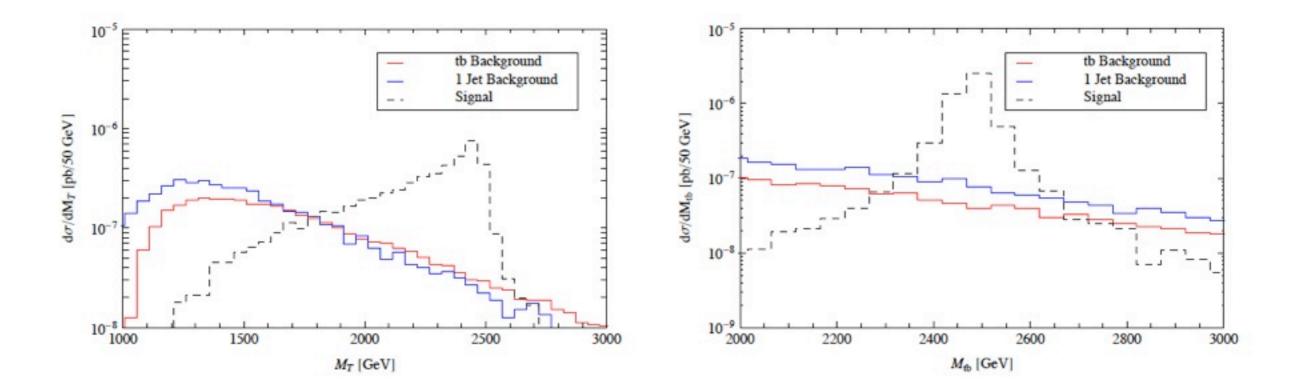
\sqrt{s}	$\sigma(pp \to W_{KK} \to tb)[pb]$	$\mathrm{BR}(t \! \to \! Wb)$	$\mathrm{BR}(W \to \ell \nu_{\ell})$	Total [pb]
8	$5.10 \cdot 10^{-4}$	1	0.216	$1.10\cdot 10^{-4}$
14	$7.36 \cdot 10^{-3}$	1	0.216	$1.59\cdot 10^{-3}$

\sqrt{s}	$\sigma(pp \to W_{KK} \to WZ)[pb]$	$\mathrm{BR}(W \to \ell \nu_{\ell})$	$\mathrm{BR}(Z \! \to \! \ell^+ \ell^-)$	Total [pb]
8	$8.76 \cdot 10^{-5}$	0.216	0.067	$1.27\cdot 10^{-6}$
14	$1.26 \cdot 10^{-3}$	0.216	0.067	$1.84 \cdot 10^{-5}$

Only the first one is worth studying


• The irreducible background includes:


$$pp \to W \to tb$$


No top quark
$$pp o gW o b \overline{b} \ell \nu_\ell$$

Other possible background, if the additional jet is soft:

$$pp \to tbj \to b\bar{b}\ell\nu_{\ell}j$$

We implement the following cuts:

$$p_{Tb} \ge 200 \; \mathrm{GeV}$$
 $p_{T\ell} \ge 150 \; \mathrm{GeV}$
 $\mathrm{MET} \ge 150 \; \mathrm{GeV}$
 $|\eta_b| \le 3.0$

14 TeV	Basic		$p_{Tt} [\text{GeV}] \in [800, 1400]$		$M_T [\text{GeV}]$ $\in [1800, 2500]$		$M_{tb} [\text{GeV}]$ $\in [2400, 2700]$	
150 fb^{-1}	$N_{ m Events}$	$\frac{S}{\sqrt{B}}$	$N_{ m Events}$	$\frac{S}{\sqrt{B}}$	$N_{ m Events}$	$\frac{S}{\sqrt{B}}$	$N_{ m Events}$	$\frac{S}{\sqrt{B}}$
W_{KK}	40	5.0	38	9.5	34	9.4	36	16.1
	(24)[14]	(3.9)[3.0]	(23)[13]	(7.7)[5.3]	(20) [12]	(7.1)[6]	(22)[13]	(12.7)[13]
SM	63		16		13		5	
	(37)[22]		(9)[6]		(8)[4]		(3)[1]	

(b-tagging)

[double b-tagging]

• Events and significance.

- In this talk a class of warped models without custodial symmetry have been introduced.
- The couplings of KK modes to SM fields is weak enough that EWPO allow for O(TeV) masses.
- By the same token production of KK modes will also be reduced.
- KK gluons may be discover in LHC₈ whereas W KK modes need more energy and luminosity.