Neutrino Anomalies and Sterile Neutrino Phenomenology

ERIC KUFLIK

TEL AVIV UNIVERSITY

BASED ON 1205. 1791 WITH K. ZUREK AND S. MCDERMOTT

Outline

- Status of 3 neutrino oscillations
 - Solar, atmospheric, θ_{13}

Theoretical Motivation for Sterile Neutrinos

• Easy to accommodate and generically occurring

• Experimental Motivation for Sterile Neutrinos

- Gallium Anomaly Lower than expected $Ga + v_e \rightarrow Ge + e^$ rate (2.7 σ).
- Reactor Anomaly Deficit in \bar{v}_e flux expected from nuclear reactors (2.5 σ)
- LSND & MiniBoone Appearance of $v_e(\bar{v}_e)$ in a $v_\mu(\bar{v}_\mu)$ beam (>3 σ)
- o Cosmology BBN and CMB

Outline

Oscillation Constraints

- Disappearance experiments Reactors, unitarity, Beam dumps
- Appearance experiments KARMEN, NOMAD, NuTeV
- LSND and MiniBoone fits in 3+1 model
- LSND and MiniBoone fits in 3+1+1 model
 Motivation & Formalism
- Reactor and Gallium Anomaly fits
- Direct Constraints
 - o Supernova, collider, meson decays, ...

Status of 3 Neutrino Oscillations

Standard Lore Non-diagonal mass matrix causes mixing among flavor states

 $|\nu_i\rangle = U_{i\beta} |\nu_\beta\rangle$ *i,j*: mass index α, β : flavor index

• Produce a flavor eigenstate which evolves over time

$$|\nu_{i}(t)\rangle = e^{i(E \cdot t - p \cdot x)} |\nu_{i}\rangle \qquad P_{\alpha \to \beta} = \left| \left\langle \nu_{\beta} \left| \nu_{\alpha}(t) \right\rangle \right|^{2}$$

Assuming only 1 mass difference is relevant

$$P_{\alpha \to \beta} = \sin^2 2\theta \sin^2 \left(1.27\Delta m^2 [eV^2] \frac{L[m]}{E[MeV]} \right)$$

• Sensitive to oscillations when $\Delta m^2 [eV^2] \frac{L[m]}{E[MeV]} \sim 1$

Status of 3 Neutrino Oscillations

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix}$$

Solar

Atmospheric

Super Kamiokande. measured the disappearance of muon neutrinos produced in the atmosphere.

KamLAND measured the disappearance of electron neutrinos produced Japanese nuclear rectors.

 $\sin^2 2\theta_{12} = 0.86$

 $\Delta m_{21}^2 = 7.6 \times 10^{-5} eV^2$

Disappearance of electron neutrinos produced in reactors to long baselines.

 θ_{13}

 $\sin^2 2\theta_{13} = 0.09$

 $\sin^2 2\theta_{23} = 1$

 $\Delta m_{32}^2 = 2.4 \times 10^{-3} eV^2$

Why sterile neutrinos?

Singlets generically come out of many BSM models

- Remnants of GUTs (SO(10), E6,...)
- Electroweak Leptogenesis, Low-scale sea-saw....
- Weakly coupled so masses can be anywhere...
- CMB, LSS, and BBN prefers additional relativistic degrees of freedom
- Oscillation anomalies

Giusarma et al. 1102.4774

Oscillation Signatures

- Disappearance $(v_{e,\mu} \rightarrow v_s)$ at L/E not affected by 3 neutrino scenario
 - L/E dependence
 - Very fast oscillations-averaged over, no L/E dependence
 - A heavy neutrino, whose mass is above the available energy. Since it is integrated out, making the lighter mixing matrix non-unitary. It's effect will be to decrease the production and detection rates, by eating some of the $v_{e,\mu,\tau}$ components.
- Similarly for appearance

The Gallium Anomaly

- Cr and Ar sources are placed in the GALLEX and SAGE solar neutrino detectors
- .5 MeV $v_e's$ are detected by $Ga + v_e \rightarrow Ge + e^-$
- 3σ lower than expected

Guinti & Laveder 1006.3244

Abdurashitov et al, SAGE 2009

The Reactor Antineutrino Anomaly (1101.2755)

- Re-evaluation of predicted reactor fluxes shows an increase of flux about 3% higher than previously calculated *Mueler et al 1101.2663 and confirmed by Huber 1106.0687*
 - Use ILL reactor β measurements to convert β spectra to ν spectra. New calculation takes into account 1000's of fission decays, only 10% fitted with 5 effective β -decays (old: 100% fitted to 30 effective β -decays)

Deficit of $\bar{\nu}_e$ from reactors $R = 0.943 \pm 0.023$ (98.6% C.L.)

Combined v_e , \bar{v}_e Disappearance Anomalies

$R = 0.943 \pm 0.023$ (98.6% C.L.)

- No L/E dependence anomaly depends crucially on the overall flux $\Delta m^2 > 0.3 \text{ eV}^2$
- Very fast oscillations that average quickly $(P = 1 \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right) \rightarrow 1 \frac{1}{2}\sin^2 2\theta)$ $\sin^2 2\theta > .14$
- Or very heavy neutrinos that reduce the $\bar{\nu}_e$ components on reactor energies

LSND (2001)

 V^2

- Produce neutrinos from pions at rest $\pi^+ \rightarrow \mu^+ \nu_\mu \rightarrow e^+ \nu_e \ \bar{\nu}_\mu \nu_\mu$
- Measure $\bar{\nu}_e$ from inverse beta decay $\bar{\nu}_e p \rightarrow e^+ n$
- Significant excess of events (3 σ) $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$
- Oscillation probability $P \sim (.264 \pm 0.081)\%$
- Best fit oscillations

$$\sin^2 2\theta = 0.003$$
 $\Delta m^2 = 1.2 e$

MiniBoone Neutrinos (2009)

 $\nu_{\mu} \rightarrow \nu_{e}$ appearance

E > 475 MeV in good agreement with background
 O Rules our LSND region at 90% in 2

neutrino model

• E < 475 MeV there is a 3.4σ excess, but inconsistent with LSND oscillation shape, but consistent with the magnitude.

MiniBoone Antineutrinos (2011)

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance

• E > 475 MeV in good agreement with LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations.

• Oscillations preferred at 99.4% CL

E < 475 MeV events in agreement with neutrino appearance
 Oscillations preferred at 97.6% CL

 $\begin{array}{ll} & \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \ \text{Summary} \\ \text{LSND:} & \sin^{2} 2\theta = 0.003 & \Delta \, m^{2} = 1.2 \ eV^{2} \\ \text{MB}\bar{\nu} > 475: & \sin^{2} 2\theta = 0.003 & \Delta \, m^{2} = 4.6 \ eV^{2} \end{array}$

Constraints on LSND + MB

- Well-known tension between LSND+MB and null experiments; worse with new MB data
- 3 + 1 Model -new Δm^2 from additional sterile neutrino

 $\sin^2 2\theta_{\mu e} = 4 \left| \frac{U_{e4}}{2} \right|^2 \left| \frac{U_{\mu 4}}{2} \right|^2$

$$\sin^2 2\theta_e = 4 |U_{e4}|^2 (1 - |U_{e4}|^2)$$

Constrained by null $\bar{\nu}_e$ disappearence (Reactors)

Take constraints from reactors with new fluxes (with new fluxes they are weaker!) Statistics dominated by Bugey; include 40/15 Bugey data. $\sin^2 2\theta_{\mu} = 4 \left| U_{\mu 4} \right|^2 (1 - \left| U_{\mu 4} \right|^2)$

Constrained by null $\bar{\nu}_{\mu}$ disappearance (Super-K, beam dumps)

SuperK measures maximal mixing for muon neutrino disappearance $1 \sim \sin^2 2\theta_{atm} = 4 |U_{\mu3}|^2 (1 - |U_{\mu3}|^2 - |U_{\mu4}|^2)$ If $|U_{\mu4}|^2$ is too large $\sin^2 2\theta_{atm}$ cannot reach its maximal value.

3+1+more?

Can additional neutrinos improve the fits?

• **3+2**: Two $\Delta m^2 \sim eV^2$ ish sterile neutrinos

- More parameters, including CP violation that help fit to the $MB\nu/\bar{\nu}$ differences
- Improvement, but still over 99% CL discrepancy with disappearance constraints -Kopp, Maltoni, Schwetz 1103.4570

• 3+1+1: One $\Delta m^2 \sim eV^2$ ish and one $\Delta m^2 \gg MeV^2$

- Proposed by Nelson 1010.3970
- Heavy neutrino is averaged over or integrated out. Does not contribute to the *shape* of oscillations.
 - × For disappearance $\Delta m_{51}^2 \gg E_{\nu} \sim MeV^2$ no oscillation, but lowers reaction rates.
- Includes CP violation.
- More compatible with BBN

3+1+1: Formalism

- r: enhances $\sin^2 2\theta_{\mu e}$ for fixed $U_{\mu 4}U_{e4}$. $U_{\mu 5}U_{e5}$ is not constrained by the shape of oscillations
- β : CP Violation, distinguishes $\nu / \bar{\nu}$ oscillations in LSND and MB
- *κ*: Constant oscillation term can shift oscillation curves

$$P = \sin^2 2 \theta_{\mu e} \sin^2 (\Delta m_{41}^2 L/4E \pm \beta) + \kappa$$

$$\sin^{2} 2 \theta_{\mu e} = 4 \left| U_{\mu 4} U_{e 4} \right|^{2} r$$
$$= 4 \left| U_{\mu 4} U_{e 4} \right|^{2} \left| U_{\mu 4}^{*} U_{e 4} + U_{\mu 5}^{*} U_{e 5} \right| / \left| U_{\mu 4}^{*} U_{e 4} \right|$$

Null Appearance Constraints

- Many collider experiments looked for ν_{μ} ($\bar{\nu}_{\mu}$) $\rightarrow \nu_{e}$ ($\bar{\nu}_{e}$). Some with very high energies $E_{\nu} > GeV$, but low L/E. Thus sensitive only to large $\Delta m^{2} \gg eV^{2}$.
- Unaffected by $\Delta m_{41}^2 \sim eV^2$ oscillations.

$$\sin^2 2\theta_{\mu e} \to 4 |U_{e5}|^2 |U_{\mu 5}|^2 \sim < 10^{-3}$$

Constrains r and κ

Some Details About the Fit

Our Fitting Philosophy

	Experiment	mode	# points		Distance (m)	E	$\Delta m^2 \ ({\rm eV}^2)$	
Appearance	MB	$\bar{\nu}_{\mu}, \ \nu_{\mu}$	11×2		541	$200-3000{\rm MeV}$	$\gtrsim 0.1$	
Fits	LSND	$\bar{ u}_{\mu}$		8	29.8	$10-60\mathrm{MeV}$	$\gtrsim 0.3$	
	KARMEN	$ar{ u}_{\mu}$		1	17.7	$1-50\mathrm{MeV}$	$\gtrsim 1$	
Null	E776	$\bar{ u}_{\mu}, \ u_{\mu}$	1		1000	$1-10\mathrm{GeV}$	$\gtrsim 1$	
Appearance	NOMAD	$ u_{\mu}$	1		625	$\gtrsim 10 - 200 { m GeV}$	$\gtrsim 10$	
Constraints	NuTeV	$\bar{ u}_{\mu}, \ u_{\mu}$	1		1436	$\gtrsim 10-300{ m GeV}$	$\gtrsim 10^2$	
	CCFR	$ u_{\mu}$	1		1436	$\gtrsim 10-300{ m GeV}$	$\gtrsim 10^2$	
	TOTAL	$ar{ u}_{\mu}, u_{\mu}$	30 pc	s., 5 null	$\sim 10 - 1436$	$10\mathrm{MeV}-600\mathrm{GeV}$	$\gtrsim 0.1$	
	Experiment		mode	# points	Distance (m)	E	$\Delta m^2 \ ({\rm eV^2})$	
a. 11	CCFR		$ u_{\mu}$	1	714 and 1116	$40 - 200 \mathrm{GeV}$	$10 - 10^3$	
Null	CDHS		$ u_{\mu}$	1	130 and 885	$2-6\mathrm{GeV}$	$10^{-1} - 10$	
Disappearance	Mention $et a$	ıl.	$\bar{ u}_e$	21	9 - 1050	$\sim 3 \mathrm{MeV}$	$10^{-2} - 10^{-1}$	
Constraints	Bugey 40/15 ratio		$\bar{\nu}_e$	25	15 and 40	$3-8\mathrm{MeV}$	$\gtrsim 10^{-2}$	
	TOTAL		$\bar{\nu}_e, \nu_\mu$	48	$10 - 10^3$	$3~{\rm MeV}-200{\rm GeV}$	$10^{-4} - 10^3$	

r offers a multiplicative enhancement but is bound to be very close to one.

 β offers more parameter freedom, less sensitivity to mass and mixing, but new low-energy data doesn't like CP violation.

Quantitatively

2010 Data

Disappearance 25.4

Appearance

LSND + MB

Everything

 $\chi^2_{\rm min}$ bins

32.1 30

75.4 84

0.20

49

5

Parameter Goodness of Fit test (Maltoni, Schwetz hep-ph/0304176]

$$\chi^2_{PG} = (\Sigma \chi^2)_{min} - \Sigma \chi^2_{min}$$

Measures the worsening of the fit from fitting to all of the data sets instead of fitting to each individually.

χ^2_{PG} p-	$= \left(\sum \chi^2\right)_{\min} -$ value = 5.02 × 1	$\sum_{n=1}^{\infty} \chi_n^2$	$_{\rm nin} = 17.2$ (3.48 σ)	7 χ^2_{PG} P-	$= \left(\sum \chi^2\right)_{\min} -$ value = 3.44 × 1	$\sum_{n=1}^{\infty} \chi_n^2$	$a_{nin} = 2$ 4.14 c	23.3 τ)
	$2010 \text{ D}_{ m s}$	ata	२ -	⊢1 +1	2011 D	ata		
		$\chi^2_{\rm min}$	bins		-	$\chi^2_{\rm min}$	bins	
	Disappearance	24.6	49		Disappearance	24.6	49	
	Appearance	0.20	5		Appearance	0.20	5	
	LSND + MB	28.3	30		LSND + MB	19.4	30	
	Everything	74.4	84		Everything	73.2	84	
$\chi^2_{\rm PG}$	$= \left(\sum \chi^2\right)_{\min} -$	$\sum_{0^{-3}} \chi_{\mathrm{m}}^2$	$a_{\min} = 21.3$	$\chi^2_{\rm PG}$	$= \left(\sum \chi^2\right)_{\min} -$	$\sum_{0^{-5}} \chi_{r}^2$	$n_{\rm nin} = 2$	29.0

3+1

2011 Data

Disappearance 25.4

Appearance

LSND + MB

Everything

 $\chi^2_{\rm min}$ bins

0.20

24.0

72.9

49

 $\mathbf{5}$

30

84

Reactor and Gallium Anomalies?

• Can a heavy neutrino explain the reactor and gallium Anomalies?

Anomaly	$sin^2 2\theta_{e5}$
Gallium	0.27 ± 0.12
Reactor	0.11±0.06
Total	0.14 ± 0.05

• A heavy (non-relativistic at BBN) neutrino can evade cosmological constraints

$$\Delta m^2 \le eV^2 \qquad N_\nu \ge 3$$

Giusarma et al. 1102.4774

$$|U_{e5}|^2 = 0.036 \pm 0.013$$

Direct Constraints on Sterile Neutrinos

• Supernova 1987A (Kainulainen, Maalampi, Peltoniemi 1991)

- Sterile neutrinos are produced from the core, causing the supernova to cool to quickly
- Strong from 100 eV to 100 MeV
- Line Searches: $\pi, K \rightarrow l \nu$
 - If the neutrino is heavy, it can distort the leptonic spectrum relative to the case with only massless neutrinos. Constraints strong from 30 MeV 500 MeV.
- Muon Lifetime (Biggio, Blennow, Fernandez-Martinez 0907.0097)
 - For $m > m_{\mu}$, the muon lifetime will be increased relative to the SM prediction due to the non-unitarity in the neutrino mixing matrix.
 - Constraints strong above m_{μ}
- $\mu \rightarrow e\gamma$
 - Non-observation constrains mixing for masses above a GeV

μ

- Visible Decays
 - ν decays to leptons

Nice review by Atre, Han, Pascoli, Zhang, 0901.3589

e

- 1. RAA and Ga do not see L/E dependence, which requires $\Delta m^2 > eV$.
- 2. LSS + CMB restricts $\Delta m^2 < eV$ if thermalized.
- 3. Direct bounds rule out large mixings for $\Delta m^2 > 100 \text{ eV}$.

No good explanation of the RAA and Ga anomalies!

Also MB & LSND even more constrained (Lots of σ).

Conclusions

All neutrino anomalies in conflict with everything.

- Many different data sources prefer additional neutrinos.
- LSND + MB oscillations in conflict with null disappearance experiments.
- Reactor and Gallium anomalies in conflict with cosmology and direct searches.