SAVING SUSY

[Early hints about the status and nature of weak-scale supersymmetry]

Jamison Galloway CERN BSM Summer Institute, June 2012

Based on arXiv:1206.1058 with A. Azatov, S. Chang, N. Craig

AT ISSUE: THE HIGGS POTENTIAL

At tree-level...

$$
\Delta V = m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + \lambda_1 |H_u|^4 + \lambda_2 |H_d|^4 - 2\lambda_3 |H_u|^2 |H_d|^2
$$

Quartics are
CRUCIAL
MSSM: $\lambda_1 = \lambda_2 = \lambda_3 = \frac{1}{8}(g^2 + g'^2)$

Two important results:

 $m_h^{\rm tree} \leq m_Z$ $m_h = 125 \,\text{GeV}$ requires large contribution from SUSY *breaking*, e.g. heavy stops \Rightarrow large $\delta\lambda_1$ $\text{large } \delta m_h$

An obvious tension A less obvious tension A single asymmetry between the two Higgses: $m_{H_u}^2 \neq m_{H_d}^2$ So the two angles of the Higgs sector - α and β - are not independent...

A lot known about the first, soon it'll be time to think harder about the second

GAME PLAN FROM HERE

Simple question of increasing relevance

Can we use the quartic structure and consequent information about couplings, comparing directly to data to tell us about feasibility and consistency of particular SUSY scenarios?*

GAME PLAN FROM HERE

Simple question of increasing relevance Can ve use the quartic structure and consequent information Danse use the warts to be a to conserve Reformation *feasibility and consistency of particular SUSY scenarios*?* the thycture dud contenuent of formation

TYPE-II 2HDM, THE GENERAL CASE

Now with all quartics turned on, and treated generically:

 $\Delta V = \lambda_1 \left| H_u^0 \right|$ $\overline{}$ \vert 4 $+ \lambda_2$ H_d^0 $\overline{}$ $\left| \frac{4}{1} - 2 \lambda_3 \right| H_u^0$ $\overline{}$ \vert $\frac{2}{4}$ $\left|H_d^0\right|$ $\overline{\mathbf{r}}$ \vert 2 $+$ h λ_4 H_u^0 $\overline{}$ \vert $^2H_u^0H_d^0 + \lambda_5 \left|H_d^0\right|$ $\overline{\mathbf{I}}$ \vert $^{2}H_{u}^{0}H_{d}^{0} + \lambda_{6}(H_{u}^{0}H_{d}^{0})^{2} + \text{c.c.}$ i

These feed into mass matrices, thus into couplings

TYPE-II 2HDM, THE GENERAL CASE

Now with all quartics turned on, and treated generically:

 $\Delta V = \lambda_1 \left| H_u^0 \right|$ $\overline{}$ \vert 4 $+ \lambda_2$ H_d^0 $\overline{}$ $\left| \frac{4}{1} - 2 \lambda_3 \right| H_u^0$ $\overline{}$ \vert $\frac{2}{4}$ $\left|H_d^0\right|$ $\overline{\mathbf{r}}$ \vert 2 $+$ h λ_4 H_u^0 $\overline{}$ \vert $^2H_u^0H_d^0 + \lambda_5 \left|H_d^0\right|$ $\overline{}$ \vert $^{2}H_{u}^{0}H_{d}^{0} + \lambda_{6}(H_{u}^{0}H_{d}^{0})^{2} + \text{c.c.}$ i

These feed into mass matrices, thus into couplings

CONCLUSION: bottom is typically *enhanced* in MSSM (assuming $\delta \lambda_1$ large)

INTERLUDE: HIGGS FROM THE BOTTOM UP

[A simple framework for model-independent constraints] Amend Higgsless SM with a custodial singlet scalar with arbitrary couplings:

$$
\Delta \mathcal{L} = \frac{1}{2} (\partial_{\mu} h)^2 - \frac{1}{2} m_h^2 h^2 - \sum_{\psi=u,d,l} m_{\psi^{(i)}} \bar{\psi}^{(i)} \psi^{(i)} \left(1 + c_{\psi} \frac{h}{v} + \dots \right) - \left(m_W^2 W_{\mu} W^{\mu} + \frac{1}{2} m_Z^2 Z_{\mu} Z^{\mu} \right) \left(1 + 2a \frac{h}{v} + \dots \right)
$$

(cf. Giudice et al, hep-ph/0703164)

INTERLUDE: HIGGS FROM THE BOTTOM UP

[A simple framework for model-independent constraints] Amend Higgsless SM with a custodial singlet scalar with arbitrary couplings:

$$
\Delta \mathcal{L} = \frac{1}{2} (\partial_{\mu} h)^2 - \frac{1}{2} m_h^2 h^2 - \sum_{\psi = u, d, l} m_{\psi^{(i)}} \bar{\psi}^{(i)} \psi^{(i)} \left(1 + \sum_{i=1}^{n} \sum_{v} h + \dots \right) - \left(m_W^2 W_{\mu} W^{\mu} + \frac{1}{2} m_Z^2 Z_{\mu} Z^{\mu} \right) \left(1 + \sum_{i=1}^{n} h + \dots \right)
$$

(cf. Giudice et al, hep-ph/0703164)

Now rescale production and branching; compare to limits and best fits for signal strength modifier from individual channels

SO WHAT DO THE DATA SAY?

 $r_{\gamma\gamma} \simeq (1.26a - 0.26c)^2$

(Nicely summarized by Farina et al, 1205.0011)

WHAT DO THE THEORISTS SEE?

 $r_{\gamma\gamma} \simeq (1.26a - 0.26c)^2$

Figure 1.1 Significant tension between

0 0 0

M SM at face value and run with it...
 $\gamma \simeq (1.26a - 0.26c)^2$ channels most sensitive to the vector coupling; let's take this at face value and run with it...

O THE THEORISTS SEE?

O THE THEORISTS SEE?

WHAT DO THE THEORISTS SEE?

Significant tension between channels most sensitive to the vector coupling; let's take this at face value and run with it...

...What if *VV* is telling the truth (at least partially)?

ESCAPE HATCHES IN THE (X)MSSM

[eXtra stuff]

Recall the general potential:

 $\Delta V = \lambda_1 \left| H_u^0 \right|$ $\overline{}$ \vert 4 $+ \lambda_2$ H_d^0 $\overline{}$ $\left| \frac{4}{1} - 2\lambda_3 \right| H_u^0$ $\overline{}$ \vert $\frac{2}{4}$ $\left|H_d^0\right|$ $\overline{\mathbf{r}}$ \vert 2 $+$ h λ_4 H_u^0 $\overline{}$ \vert $^2H_u^0H_d^0 + \lambda_5 \left|H_d^0\right|$ $\overline{}$ \vert $^{2}H_{u}^{0}H_{d}^{0} + \lambda_{6}(H_{u}^{0}H_{d}^{0})^{2} + \text{c.c.}$ i

2

 $\tan\beta \lesssim 0$

 $\lambda_1 + \lambda_3 - \frac{\lambda_4}{2}$

With bottom suppression at largish tan beta possible when

 $\delta \lambda _{4}=% \begin{bmatrix} \omega &\omega_{11}^{2}+\omega_{12}^{2}+\omega_{11}^{2}+\omega_{12}^{2}+\omega_{13}^{2}+3\omega_{14}^{2} \end{bmatrix} .$ $y_t^4 \mu$ $32\pi^2m_{\tilde{t}}$ $\int A_t$ $m_{\tilde{t}}$ $\bigg)^3 - \frac{6A_t}{m}$ $m_{\tilde{t}}$ 1 e.g. effects from stops: $\delta\lambda_3 =$ $3y_t^4\mu^2$ $64\pi^2m_{\tilde{t}}^2$ $\int A_t$ $m_{\tilde{t}}$ $\sqrt{2}$ -2 1 $\delta \lambda _{1}=% \begin{bmatrix} \omega &\frac{1}{2}\sqrt{3}\omega &\frac{1}{2}\$ $3y_t^4$ $16\pi^2$ $\int A_t$ $m_{\tilde{t}}$ $\bigg)^2 - \frac{1}{12} \left(\frac{A_t}{m_{\tilde t}} \right)$ \setminus ⁴

(cf. Carena et al, hep-ph/9504316) Possibilities remain (e.g. staus)... (cf. Carena et al, 1112.3336 & 1205.5842)

MSSM NMSSM, etc. $W = \lambda S H_u H_d + f(S)$ $\Rightarrow \delta \lambda _{3}=-|\lambda |^{2}/2$ (cf. lots of stuff...)

> inequality can be turned around, provided coupling is largish:

$\lambda \geq 0.6$

approaching Fat Higgs territory, especially in the presence of nonlight stops; again possibilities remain...

[Possible escape hatch in case a b-suppressed balance is struck] Can we arrange something simpler than usual? One possibility:

 $\Delta \mathcal{L} \sim \Lambda^3 H - m^2 H^2$

Can we arrange something simpler than usual? One possibility: [Possible escape hatch in case a b-suppressed balance is struck]

 Δ *L* ~ $\Lambda^3 \hat{H}$ *= m*²*H*² *Umm...*

[Possible escape hatch in case a b-suppressed balance is struck] Can we arrange something simpler than usual? One possibility:

Δ *L* ~ $\Lambda^3 \overleftrightarrow{H}$ *= m*²*H*² *Umm...*

But this comes from something we know well: Higgs from a "magnetic sector"

 $\Delta W = \lambda H Q Q$

• Minimal confining gauge group • $i = 1, ..., 4; 1 \rightarrow L, 2 \rightarrow R$

• 2N flavors: self-dual, strong F.P.

Gherghetta et al, 1107.4697; Heckman et al, 1108.3849...)

(cf. Craig et al, 1106.2164; Azatov et al, 1106.3346;

- Assume no SUSY mass for *Q*1*,*²
- \bullet SUSY \Rightarrow confines @ \Rightarrow confines @ $\Lambda_{\rm M} \lesssim \Lambda_{\rm SUSY}$

$$
\blacktriangleright \Delta V = m_{H_{u,d}}^2 |H_{u,d}|^2 + \left(c \frac{\lambda_{u,d} \Lambda_{\rm M}^3}{16\pi^2} H_{u,d} + \text{h.c.}\right) + \dots
$$

[Possible escape hatch in case a b-suppressed balance is struck] Can we arrange something simpler than usual? One possibility:

But this comes from something we know well: Higgs from a "magnetic sector"

 $\Delta W = \lambda H Q Q$

(cf. Craig et al, 1106.2164; Azatov et al, 1106.3346; Gherghetta et al, 1107.4697; Heckman et al, 1108.3849...)

- Minimal confining gauge group
- $i = 1, ..., 4; 1 \rightarrow L, 2 \rightarrow R$
- 2N flavors: self-dual, strong F.P.
- Assume no SUSY mass for *Q*1*,*²
- SUSY \Rightarrow confines @ $\Lambda_M \lesssim \Lambda_{\rm SUSY}$

$$
\Delta V = \left(\frac{\sum_{u,d}\Lambda_M^3}{16\pi^2}H_{u,d} + h.c.\right) + \dots \frac{\lambda \Rightarrow \tan \beta}{m \Rightarrow \text{mass, }\alpha}
$$

> 0 $v = c\frac{\lambda \Lambda_M^3}{16\pi^2 m^2} > f_M$

IMPLICATIONS

- 1. We don't even *need* the quartics
- \Rightarrow Nothing fancy (no tuning) needed in order to attain $m_h \gg m_Z$
- \Rightarrow Nothing fancy (large A terms, mixings, ...) for $c_b \to 0$ as $\tan \beta \to \infty$
- 2. The magnetic sector contains lightish scalars. Minimally $[SU(2)^2/SU(2)]$:
	- $\text{e.g.} \quad \Lambda_{\text{M}} = \text{TeV}, \, \, \text{large} \, \, \tan \beta, \, \, m_h = 125 \, \text{GeV}$ $\Rightarrow m_{\pi} \sim 350 \,\text{GeV}, \ \lambda_u v_u / \Lambda_M \simeq 0.1$

 $\Rightarrow m_{\pi} \sim 350 \,\text{GeV}, \ \lambda_u v_u / \Lambda_M \simeq 0.1$
Decays to heavy SM states: $\pi^0 \to t\bar{t}, Zh^0$

3. Theoretical aspects:

 $m_{\vec{\pi}}^2 \sim (\lambda_u v_u + \lambda_d v_d)\Lambda_{\mathrm{M}}$

- > Naturalness fully restored (frees up Higgs, stops as well)
-
- > Unification certainly not automatic, but *can* be done
- > Dark matter: nothing to add.

Does SUSY need saving?

Does SUSY need saving? Time will tell.

Does SUSY need saving? Time will tell. Meanwhile:

o A potentially relevant portion of the Yukawa parameter space can be reopened by careful conspiracy among (x)MSSM parameters...

> $\Delta W = \lambda S H_u H_d, \ \lambda H \mathcal{O}, \ \lambda T H_u H_u, \ \ldots$ (singlets) (doublets) (triplets)

 ...can all be encoded in the Higgs potential and compared directly to measured couplings

- **o** Mass at 125 and couplings with any bottom suppression amount to a tense situation for minimality; non-minimal dynamics might be preferred
- **o** A "Magnetic Higgs" gives us a lot of breathing room, and plenty of new states (scalars of the strong dynamics, light stops...) to anticipate.

Does SUSY need saving? Time will tell. Meanwhile:

o A potentially relevant portion of the Yukawa parameter space can be reopened by careful conspiracy among (x)MSSM parameters...

> $\Delta W = \lambda S H_u H_d, \ \lambda H \mathcal{O}, \ \lambda T H_u H_u, \ \ldots$ (singlets) (doublets) (triplets)

 ...can all be encoded in the Higgs potential and compared directly to measured couplings

- **o** Mass at 125 and couplings with any bottom suppression amount to a tense situation for minimality; non-minimal dynamics might be preferred
- **o** A "Magnetic Higgs" gives us a lot of breathing room, and plenty of new states (scalars of the strong dynamics, light stops...) to anticipate.

BACKUPS

FLAT/RUNAWAY DIRECTIONS

Without SUS'ic masses for EW *Q* states, we need to worry about runaways:

 $\mathcal{L} =$ z
Z $d^4\theta \mathcal{Z} Q^{\dagger} e^F e^V Q + \dots$ (1) (2) (3)

- 1) Contains physical gauge coupling and flavor-universal soft masses (*D* term) 2) Imagine gauging the non-anomalous flavor symmetries, *F*
- 3) Usual gauging.

o Flavor-universal mass suppressed in IR for attractive IR fixed point

o Masses proportional to 'gauged' flavor symmetries not renormalized; tachyonic terms will exist

o Coupling to *H* lifts flat directions...

o *H* joins fixed point only in the IR...

o ...any flat directions lifted by *its* soft mass!

THE PERTURBATIVE REGIME

$$
\Delta \mathcal{L}_{\text{eff}} = -m^2 |H|^2 + \sum_{i} \frac{c \Lambda^{4-i}}{16\pi^2} \text{tr}\left[\left(\Sigma^{\dagger} \mathcal{H} \lambda \right)^i \right] + \dots
$$

$$
\Delta \mathcal{L}_{\text{UV}} = \langle \overline{\lambda H} \rangle Q \overline{Q}
$$

Back-reaction of Higgs VEV resembles a technifermion mass

