DY LO integration in HERAfitter.

Sapronov Andrey

February 14, 2012

Sapronov Andrey ()

DY LO integration in HERAfitter.

February 14, 2012 1 / 16

э

DY LO integration code

The code is used for optimized born level Drell-Yan cross-section integration in LHC experiments. It supports custumized binnings and kinematic cuts.

DY integration code:

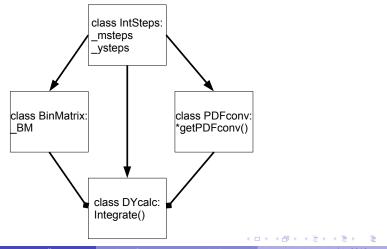
Simple LO cross section formulae: DY NC: $pp \rightarrow Z/\gamma \rightarrow e^+e^-$

$$\frac{d\sigma_{\gamma}^{2}}{dMdydcos\theta^{*}} = N_{c}C_{q\bar{q}}^{2}\frac{8\alpha^{2}}{3M^{3}}\tau$$
$$\times \sum_{q}e_{q}^{2}f_{q}(x_{1},M)f_{\bar{q}}(x_{2},M)F_{q\bar{q}}(1+\cos^{2}\theta^{*},\cos\theta^{*})$$

DY CC:
$$pp \rightarrow W^{\pm} \rightarrow e^{\pm} \nu$$

$$\frac{d\sigma_{W^{\pm}}^{3}}{dMdydcos\theta^{*}} = \frac{\pi\alpha^{2}}{48s_{W}^{4}}M\tau \frac{(1-\cos\theta^{*})^{2}}{(M^{2}-M_{W}^{2})^{2}+\Gamma_{W}^{2}M_{W}^{2}} \times \sum_{qq'}V_{qq'}f_{q}(x_{1},M)f_{q'}(x_{2},M)$$

where $\tau = \frac{M^2}{S_0}$, S_0 - beam energy. $F_{q\bar{q}}(1 + \cos^2 \theta^*, \cos \theta^*)$ is a linear homogenious dependence on $1 + \cos^2 \theta^*$ and $\cos \theta^*$.


Sapronov Andrey ()

- Integral over $\cos \theta^*$ is taken analitically in limits defined through eta ranges.
- $p_T(I)$ cut is possible
- dMdy needs to be integrated numerically since non-analylital PDF dependence.
- by Simpson method to avoid MC fluctuations
- numerical Simpson integration have customly optimized grid for dM and dy
- PDF part factorizes and is the only part that changes in the iteration.
- Makes simultaneous integration of several η_e bins possible
- Speed improvements by using precalculated non-PDF component of the expression in the Simpson integration steps.

QCDNUM optimizations

- QCDNUM allows fast structure function interpolation if grid points are fixed in our case Simpson's steps.
- use indexed array of grid points (precalculated)
- use FASTSNS to initialize QCDNUM grid (standard limit on grid points in qcdnum.inc maybe not enough)
- perform interpolation and multiply
- class PDFconv

Class diagram

Sapronov Andrey ()

DY LO integration in HERAfitter.

February 14, 2012 6 / 16

Code interface description:

Initialize:

- int dy_create_calc_(const int *ds_id, const int *chg_prod, const double *beam_en, const char *bos, const double *ranges, const char *var_name, const int *n_bins, const double *bin_edges);
 - ds_id dataset identificator everything will be referenced by.
 - chg_prod, beam_en beam parameters.
 - bos boson name, "W" or "Z"
 - ranges 7 element array with m, y, eta ranges and pt cut.
 - var_name binned variable name, "eta" or "y"
 - n_bins, bin_edges binning parameters.

Calculate:

```
int dy_do_calc_();
int dy_get_res_(const int *ds_id, double *calc_res);
int dy_release_();
```

- dy_do_calc performs calculations for all requested datasets.
- dy_get_res writes calc results for dataset ds_id to array calc_res
- dy_release frees allocated memory.

Fortran calls example:

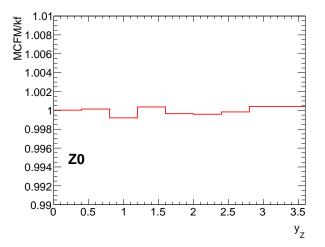
- in InitDYCCXsectionDataset_kfactor subroutine in src/init_theory.f define input parameters: m(2), y(2), eta(2) ranges and pt_cut in ranges(7) array
- define beam energy and charge product and integration bins array eb(n_data_points)
- call calculation initialization routine for a given dataset ID IDataSet:

- The string constants define which bozon type is calculated for which distribution
- Most of the input parameters are read in automatically from datafiles

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

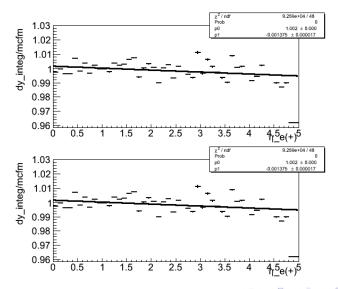
Fortran calls example:

• For each iteration do

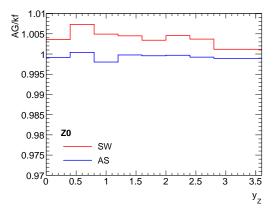

call dy_do_calc;

- and read result (in src/dy_cc_sigma.f) to bsigs(n_data_points) array;
 call dy_get_res(IDataSet, bsigs)
- when the run is finished, realese the memory by

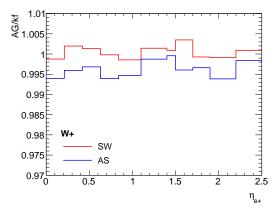
call dy_release;


Validation with MCFM

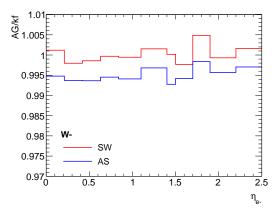
HERAPDF1.5NLO via LHAPDF, MCFMv6.1


Validation with MCFM

HERAPDF1.5NLO via LHAPDF, MCFMv6.1


Crosscheck with APPLgrid

within HERAfitter, with APPLgrid 1.1.6, k-factors from MCFM6.1


Crosscheck with APPLgrid

within HERAfitter, with APPLgrid 1.1.6, k-factors from MCFM6.1

Crosscheck with APPLgrid

within HERAfitter, with APPLgrid 1.1.6, k-factors from MCFM6.1

Summary

- The LO DY integration with NLO/NNLO k-factors is a fast tool in HERAfitter, which should allow to perform fits on it's own and make cross checks with APPLgrid.
- The independent comparison is quite difficult to conduct due to numerous parameters and conditions have to be complied.
- Cross checks with applgrid are ongoing
- Further steps would be to check how much the parameters variation in HERAfitter makes k-factor method deviate from APPLgrid results.