ACOT Theory Issues & Developments

Heavy Quarks NNLO & beyond ...

Fred Olness

SMU

Conspirators: T.P. Stavreva, I Schienbein, A. Kusina, J.-Y. Yu, K. Kovarik, P. Nadolsky, M. Guzzi J. Owens, J. Morfin, C. Keppel, D. Soper ...

HERA-Fitter 13 February 2012

Fred Olness

H1 and ZEUS 5 10 × $\sigma^+_{r,NC}(x,Q^2)$ HERA I NC e⁺p x = 0.00005, i=21**Fixed Target** x = 0.00008, i=20 x = 0.00013, i=19 HERAPDF1.0 x = 0.00020, i=18 x = 0.00032. i=17 x = 0.0005, i=16x = 0.0008, i=15 x = 0.0013, i=14x = 0.0020, i=1310⁴ x = 0.0032, i=12= 0.005, i=11 10^{3} = 0.008, i=10x = 0.013, i=9x = 0.02, i=8 10^{2} Ē x = 0.032, i=7 x = 0.05, i=6. 200x = 0.08, i=5 10 Ξ x = 0.13, i=4x = 0.18, i=31 Ξ x = 0.25, i=2 -1 x = 0.40, i=1 10 -2 x = 0.65, i=010 10 10^{3} 10² 104 10⁵ 10 1 Q^2/GeV^2

Les Houches Comparative Studies

We have made progress in addressing how to compute heavy quarks. Recent efforts by many groups

The Cast:

ACOT & S-ACOT Codes Used in CTEQ4HQ, 5HQ, 6HQ

Aivazis, Collins, Olness, Tung, Phys.Rev.D50:3102-3118,1994.

S-ACOT CTEQ 6.5 & 6.6

Tung, Lai, Belyaev, Pumplin, Stump, Yuan, JHEP 0702:053,2007. Nadolsky, Tung, Phys.Rev.D79:113014,2009.

Thorne-Roberts (TR') MSTW Fits

Thorne, Phys.Rev.D73:054019,2006.

ABKM:

Blumlein, Klein, Moch Phys.Rev.D81:014032,2010 FONLL: Used in NNPDF Fits

Forte, Laenen, Nason, Rojo, Nucl.Phys.B834:116-162,2010.

Les Houches Comparative Study

The SM and NLO Multileg Working Group: Summary report.J. Rojo, et al.,e-Print: arXiv:1003.1241 [hep-ph]

Fred Olness

13 February 2012 HERA-Fitter

Differences understood Should reduce at higher order

ACOT

ACOT: $m \rightarrow 0$ limit yields MS-Bar with no finite renormalization

Based on the Collins-Wilczek-Zee (CWZ) Renormalization Scheme ... hence, extensible to all orders

DGLAP kernels & PDF evolution are pure MS-Bar Definition of Subtractions analogous to MS-Bar

The minimal extension of MS-Bar scheme

Multi-Scale Problem Resolved: ... from low to high scales

ACOT m→ 0 limit cross check with QCDNUM at NLO

PATCH FOR TESTING: HMA	ASS=0= 0.93800	0023		
IHADRON: SET TO HADR	RON=1			
GZ and ZZ are for te	esting			
print x,q, ratios:	0.00319999992	12.2474487	1.00092636	1.0012981
print x,q, ratios:	0.00499999989	12.2474487	1.00098575	1.00126809
<pre>print x,q, ratios:</pre>	0.0080000038	12.2474487	1.00106943	1.00153596
print x,q, ratios:	0.00319999992	14.1421356	1.00092542	1.00125357
<pre>print x,q, ratios:</pre>	0.00499999989	14.1421356	1.00097202	1.00121532
<pre>print x,q, ratios:</pre>	0.0080000038	14.1421356	1.00104411	1.00146055
<pre>print x,q, ratios:</pre>	0.013000003	14.1421356	1.00107382	1.0013549
<pre>print x,q, ratios:</pre>	0.0199999996	14.1421356	1.00114663	1.0014694
<pre>print x,q, ratios:</pre>	0.0320000015	14.1421356	1.00119237	1.00152525
<pre>print x,q, ratios:</pre>	0.050000007	14.1421356	1.00117963	1.00131561
<pre>print x,q, ratios:</pre>	0.0799999982	14.1421356	1.00098036	1.00123239
<pre>print x,q, ratios:</pre>	0.00499999989	15.8113883	1.00095999	1.00117694
<pre>print x,q, ratios:</pre>	0.0080000038	15.8113883	1.0010229	1.00140587
	0.013000003	15.8113883	1.00104124	1.00130353
NLO Check with	0.0199999996	15.8113883	1.00110599	1.00140934
OCDNUM	0.0320000015	15.8113883	1.00114419	1.00146259
	0.050000007	15.8113883	1.00113621	1.00125726
	0.0799999982	15.8113883	1.00095108	1.0011996
~1E-3	0.129999995	15.8113883	1.00055001	1.00103563
print x,q, ratios:	0.25	15.8113883	0.99929117	1.0000816
<pre>print x,q, ratios:</pre>	0.40000006	15.8113883	0.997267345	0.998376607
<pre>print x,q, ratios:</pre>	0.00499999989	17.3205081	1.00094852	1.00114569
<pre>print x,q, ratios:</pre>	0.0080000038	17.3205081	1.00100525	1.00136309
<pre>print x,q, ratios:</pre>	0.013000003	17.3205081	1.00101481	1.00118502
<pre>print x,q, ratios:</pre>	0.0199999996	17.3205081	1.00107357	1.00136459
<pre>print x,q, ratios:</pre>	0.032000015	17.3205081	1.00110601	1.00140262

ACOT Extension to Higher Orders

Full ACOT

Extensible to any order

$$\sigma = f(\xi(x, m_{ps}), Q) \otimes \hat{\sigma}(m_{dyn})$$
$$\xi(x, m_{ps}) = x \left(1 + \left[\frac{n m_{ps}}{Q} \right]^2 \right)$$
$$n = \{0, 1, 2\}$$

Distinguish "phase space" mass from "dynamic" mass

Fred Olness

13 February 2012 HERA-Fitter

Page 11

]

STEP 1:

Look at F₂^C to see effect of individual terms: *i.e. LO, NLO, SUB*

Examine effect of mass for both: a) phase space mass b) dynamic mass

STEP 2:

Look at inclusive F_2 and F_L

F_2^{charm}

Two Types of Mass Depencence @ NLO: "dynamic" & "phase space" 14

$F_2^{inclusive}$

EFFECT OF MASS SCALING @ N3LO (Phase Space Mass)

EFFECT OF MASS SCALING @ N3LO (Phase Space Mass)

FLAVOR DECOMPOSITION

FLAVOR DECOMPOSITION: Final State Quark:

FLAVOR DECOMPOSITION: Initial State Quark:

FINAL RESULT

F_{2,L} @ N3LO

F, @ N3LO

F_L @ N3LO

This technique provides an N3LO extension of ACOT

"Phase space" mass is included via rescaling Appears to be dominant effect

F2:

Very stable.

LO and NLO have full m-dependence

FL:

More complex as NLO corrections are large N2LO and N3LO terms converge

For inclusive FL, heavy quark terms vanish for low Q; this moderates mass effects

13 February 2012 HERA-Fitter

Fortran Interface

```
subroutine SF ACOT wrap(
     x 1n,
     q2 in,
     f1231 out,
     f123lc out,
     f123lb out,
     hfscheme in,
     icharge in,
     iflag,
     index,
     UseKFactors)
```

F1, F2, F3, FL are out via f1231_out f1231_out(1)=F1 f1231_out(2)=F2 f1231_out(3)=F3 f1231_out(4)=FL same for charm only contribution: f1231c same for charm only contribution: f1231b hfscheme_in: NLO massless and massive icharge in: 0 NC: photon exchange only

hfscheme_in: NLO massless and massive icharge_in: 0 NC: photon exchange only icharge_in: 4 NC: gamma+gammaZ+Z icharge_in: -1 CC eicharge_in: +1 CC e+ iflag: flag from FCN index: data index - integer UseKFactors: use of kfactors

The "Interface" Function

The NLO analytic result

Why do we need the K-factor method???

ACOT

$$\begin{split} \tilde{f}_{1}^{Q}(\tilde{s}_{-}) &= \frac{8}{\Delta^{\prime 2}} \bigg\{ -\Delta^{2}(S_{1}\Sigma - 2m_{4}m_{2}S) I_{\xi'} + 2m_{-}m_{2}S \left(\frac{1}{s_{+}} |\Delta^{\prime 2} + 4m_{2}^{2}\Sigma_{+} + 2\Sigma_{+} - \Sigma_{-} + \frac{\Sigma_{+} + \tilde{s}_{1}}{2} + \frac{\tilde{s}_{1} + m_{2}^{2}}{\Delta^{\prime \tilde{s}_{1}}} \left[\Delta^{\prime 2} + 2\Sigma_{-} \sum_{++} - (m_{2}^{2} - Q^{2}) \tilde{s}_{1} \right] L_{\xi'} \bigg) \\ &+ S_{+} \left(\frac{-m_{2}^{2}\Sigma_{-}}{(\tilde{s}_{+} + m_{2}^{2})\tilde{s}_{1}} (\Delta^{2} + 4m_{2}^{2}\Sigma_{-}) - \frac{1}{4(\tilde{s}_{1} + m_{2}^{2})} \left[3\Sigma^{2}_{-1}\Sigma_{-} + 4m_{2}^{2}(10\Sigma_{-}\Sigma_{+} - \Sigma_{+} - \Sigma_{+}) - m_{1}^{2}\Sigma_{+1}) + \tilde{s}_{1} [-7\Sigma_{+1}\Sigma_{-} + 18\Delta^{2} - 4m_{1}^{2}(7Q^{2} - 4m_{2}^{2} + 7m_{1}^{2})] \\ &+ S_{1}(\Sigma_{-} - m_{1}^{2}\Sigma_{+1}) + \tilde{s}_{1}[-7\Sigma_{+1}\Sigma_{-} + 18\Delta^{2} - 4m_{1}^{2}(7Q^{2} - 4m_{2}^{2} + 7m_{1}^{2})] \\ &+ 3s_{1}^{2}[\Sigma_{-} - 2m_{1}^{2}] - \tilde{s}_{1}^{3} + \frac{\tilde{s}_{1} + m_{2}^{2}}{2\Delta^{\prime}} \left[\frac{-2}{\tilde{s}_{1}}\Sigma_{-} + (\Delta^{2} - 2\Sigma_{+} - \Sigma_{+}) \right] \\ &+ (4m_{1}^{2}m_{2}^{2} - 7\Sigma_{+} - \Sigma_{+}) - 4\Sigma_{-}\tilde{s}_{1} - \tilde{s}_{1}^{2} \right] L_{\xi'} \bigg) \bigg\} \\ \tilde{f}_{2}^{Q}(\tilde{s}_{-}) &= \frac{16}{\Delta^{\prime 4}} \bigg\{ -2\Delta^{4}S_{-}I_{\xi} + 2m_{1}m_{2}S_{-} \left(\frac{\tilde{s}_{1} + m_{2}^{2}}{\Delta^{\prime}} \left(\Delta^{\prime 2} - 6m_{1}^{2}Q^{2} \right) L_{\xi'} \\ &= \frac{\Delta^{\prime 2}(\tilde{s}_{1} + m_{2}^{2})}{2(\tilde{s}_{1} + m_{2}^{2})} + \left(2\Delta^{\prime 2} - 3Q^{2}(\tilde{s} + \Sigma_{+})\right) \bigg) + S_{+} \bigg(-2(\Delta^{2} - 6m_{1}^{4}Q^{2})(\tilde{s}_{1} - m_{2}^{2}) \\ &- 2(m^{2} - m_{2}^{2})\tilde{s}^{2} - 9m_{2}^{2}\Sigma_{+}^{2} + \Delta^{2}(2\Sigma_{1} - m_{3}^{2}) + 2\tilde{s}_{1}(2\Delta^{2} + (m^{2} - 5m_{2}^{2})\Sigma_{-}) \right) \\ &+ \frac{(\Delta^{\prime 2} - 6Q^{2}(m_{2}^{2} + \tilde{s}_{1}))\Sigma_{+1}(\tilde{s}_{1} + \Sigma_{+})}{2(\tilde{s}_{1} - m_{2}^{2})} - \frac{2\Delta^{2}}{\tilde{s}_{1}} \bigg(\Delta^{2} + 2(2m_{2}^{2} + \tilde{s}_{1})\Sigma_{+} \bigg) \bigg) \\ &+ \frac{(\tilde{s}^{\prime} + m_{2}^{2})}{\Delta^{\prime}} \bigg[\frac{-2\Delta^{2}R_{-}I_{\xi}} + 2m_{1}m_{2}R_{-} \bigg(1 - \frac{\Sigma_{-}}{\tilde{s}_{1}} - \frac{(\tilde{s}_{1} + m_{2}^{2})(\tilde{s}_{1} + \Sigma_{+})}{\Delta^{\prime}\tilde{s}_{1}} \bigg) \\ &+ \frac{\tilde{s}_{1}^{\prime} + m_{2}^{2}}{\Delta^{\prime}\tilde{s}_{1}} \bigg[-\tilde{s}_{1}^{\prime} + 2m_{1}m_{2}R_{-} \bigg(1 - \frac{\Sigma_{-}}{\tilde{s}_{1}} - \frac{(\tilde{s}_{1} + m_{2}^{2})(\tilde{s}_{1} + \Sigma_{+})}{2(\tilde{s}_{1} + m_{2}^{2})} \\ &+ \frac{\tilde{s}_{1} + m_{2}^{2}}{\tilde{s}_{1}} \bigg] \bigg] \right\}$$

with

and

$$L_{\mathcal{C}'} \equiv \ln\left(\frac{\Sigma_{++} + \hat{s}_1 - \Delta'}{\Sigma_{++} + \hat{s}_1 - \Delta'}\right)$$

$$I_{\xi'} = \left(rac{\hat{s}_1 + 2m_2^2}{\hat{s}_1^2} + rac{\hat{s}_1 - m_2^2}{\Delta' \hat{s}_1^2} \Sigma_{++} L_{\xi'}
ight) \; .$$

S-ACOT

$$\begin{split} C_2^{(Vq)(1)} &= C_2(F) \frac{x}{2} \left[\frac{1+x^2}{1-x} \left(\ln \frac{(1-x)}{x} - \frac{3}{4} \right) + \frac{1}{4} (9+5x) \right]_+ , \\ C_1^{(Vq)(1)} &= \frac{1}{2x} C_2^{(Vq)(1)} - C_2(F) \frac{1}{2} x , \\ C_3^{(Vq)(1)} &= \frac{1}{x} C_2^{(Vq)(1)} - C_2(F) (1+x) , \end{split}$$

Coordinating Standard Model Parameters

Communication with Fred's code

COMMON /Ischeme/ ISCH, ISET, IFLG, IHAD common /fred/ xmc,xmb,HMASS common/fredew/ sinw2, xmw, xmz

Isch:	Scheme: ACOT, S-ACOT, S-ACOT-χ
Iset:	PDF set
Iflg:	not yet used
Ihad:	Hadron: proton, neutron
Xmc:	Charm Mass
Xmb:	Bottom Mass
Hmass:	Proton mass
Sinw2:	$\sin \theta_{\rm W}^{2}$
Xmw:	M _w
Xmz:	M _z

Thanks to

Voica Radescu

QCDNUM Package

QCDNUM ACOT Package

$$F_{123L} = \int dz \ \int dy \ \int dx \ C_{123L}(x, y, z) f(x)$$

Change order of integrations
$$F_{123L} = \int dx \ f(x) \ \left[\int dy \ \int dz \ C_{123L}(x, y, z) \right]$$

Weight tables

Need tables for:

 $\{q,c,b\} \otimes \{F_2,F_L\} \otimes \{LO, NLO, SUB, \frac{NLO-Q}{SUB-Q}\}$

Thanks to Michiel Botje

13 February 2012 HERA-Fitter

QCDNUM ACOT Package

NN()N3()

T.P. Stavreva, I Schienbein,

Must decompose into individual flavor components

 $x^{-1}F_a = q_{ns} \otimes C_{a,q}^{ns} + \langle e^2 \rangle (q_s \otimes C_{a,q}^s + g \otimes C_{a,g}), \quad (a = 2, L)$

Fred Olness

13 February 2012 HERA-Fitter

Page 35

Master formula for decomposing the flavor components

$$x^{-1}F_{a}^{ij} = q_{i}^{+} \otimes \left\{ e_{i}^{2} \left[C_{a,q}^{ns}(n_{f} = 0) \ \delta_{ij} \quad \mathbf{j} \right] + C_{a,q}^{ns}(j) - C_{a,q}^{ns}(j-1) \right] + \langle e^{2} \rangle^{(j)} C_{a,q}^{ps}(j) - \langle e^{2} \rangle^{(j-1)} C_{a,q}^{ps}(j-1) \right\}$$

Issues: Flavor separation: *New diagrams at this order*

- c,b, goes down beam pipe
- both c & b in final state

Conclusion

Heavy Quarks & Higher Order Corrections:

Essential to properly incorporate mass effects for required precision Improved measurements of F^2 , F^{cc} , F^{bb} , and F_L :

Improved precision for LHC where heavy flavors play a prominent role

Theoretically, we can now compute full dynamic mass range [10⁻¹⁵⁰,10⁺¹⁵⁰] ACOT natural massive extension of MS-bar Separate roles of dynamic and kinematic masses illustrated Mass effects are essential:

N2LO and N3LO Correction Implemented: Flavor Decomposition Essential Stable results for F2 and FL Important reference point

Interface to HERA Fitter framework:

Thanks to: A. Kusina, T.P. Stavreva I Schienbein, J.-Y. Yu, K. Kovarik, P. Nadolsky, M. Guzzi
J. Owens, J. Morfin, C. Keppel, D. Soper ...
& the HERA-PDF Working Group