Improved sensitivity for Charged Higgs searches in Top quark decays using τ polarisation and Multivariate Analysis

Fernando Barreiro

Universidad Autónoma de Madrid

Charged Higgs 2012, Uppsala

Theoretical background

We present a method to search for a light charged Higgs H^\pm from the decay chain $t\to bH^+\to b\tau^+\nu_{\tau}$. The relevant part of the MSSM Lagrangian is

$$\mathcal{L} = \frac{g}{2\sqrt{2}M_W} \left\{ V_{tb}H^+ \left[\bar{u}_t \left(A(1+\gamma_5) + B(1-\gamma_5) \right) u_b \right] + CH^+ \left[\bar{u}_{\nu_I} (1-\gamma_5) u_I \right] \right\}$$

Where $A = m_t \cot \beta$, $B = m_b \tan \beta$ and $C = m_\tau \tan \beta$. Note that the H^+ (W^+) coupling to leptons is right-handed (resp. left-handed).

The branching fractions involved are $\mathcal{B}(H^+ \to \tau^+ \nu_\tau) \simeq 1$ and $\mathcal{B}(t \to bH^+)$ is obtained using FeynHiggs (Heinemeyer, Hollik and Weiglein) as a function of tan β (see arXiv:0907.1498)

Event generation

For this study, ttbar and single top events are generated using Pythia 6.4 - Tauola. The decay chain of the top quark is $t(\overline{t}) \to H^\pm b(\overline{b}) \to \tau^\pm \nu_\tau (\overline{\nu}_\tau) b(\overline{b})$, where the τ is left to decay hadronically in the $\tau \to \rho \nu_\tau$ channel and the ρ meson decays via $\rho^\pm \to \pi^\pm \pi^0$. The event topologies of the signal and SM irreducible background for the $t\overline{t}$ channel are described in the following diagrams.

Trigger and acceptance cuts

- $|\eta_I| < 2.5$; $I = e, \mu$.
- $|\eta_{b,\bar{b}}| < 2.5$.
- p_{T,I} > 20 GeV.
- $p_{T,b,\bar{b}} > 20$ GeV.
- $p_{T,\rho} > 10$ GeV.

Variables fed in the TMVA

- Helicity angle ψ introduced by Eriksson, Ingelman, Rathsman, Stal [JHEP 801 (2008) 024]
- Energy and p_T of b-jets in $t \to Wb$ and $t \to Hb$.
- Energy and p_T of τ -jets in $H^+, W^+ \to \tau \nu_{\tau}$.
- Fractional energy and p_T of single charged prong in τ decays.

Update of analysis by Hesselbach, Moretti, Rathsman, Sopczak [EPJC 83 (2008) 311]

Tau polarisation effects

The τ leptons coupling to H^{\pm} are right-handed, whereas those coupling to SM W^{\pm} bosons are left-handed. This leads to different angular distributions of the τ decay products depending on the ratios $E(\pi)/E(\rho)$ and $p_T(\pi)/p_T(\rho)$ (Hagiwara, Martin, Roy, Zeppenfeld).

The distributions for these variables on the signal and background processes are shown below.

Tau polarisation effects

Another effect of the R-polarisation of the τ can be seen on the distributions of the angle between the top quark and the ρ meson, in the reference frame where the W is at rest. The helicity angle ψ is defined as

$$\cos\psi = -rac{ec{
ho}_t\cdotec{
ho}_
ho}{ertec{
ho}_tertertec{
ho}_
hoert}igg|_{ec{
ho}_W=0} \simeq rac{2m_{
ho b}^2}{m_t^2-m_W^2}-1$$

The distributions for $\cos \psi$ for different H^+ masses and for the SM background are shown below.

Kinematical effects $(m_t > m_H > m_W)$: τ -jet

Since we consider the mass of the charged Higgs to be larger than m_W , the decay products of the τ are expected to be harder in the energy and p_T spectra. The distributions of the τ – jet energy and transverse momentum are shown below for different masses of H^\pm and for the SM background.

Kinematical effects $(m_t > m_H > m_W)$: b-jet

As the charged Higgs mass increases, we can see a decrease in the energy and p_T of the b-jet coming from the H^+ production vertex (this jet can be identified using charge and angular correlations between the jet and the lepton from W). The distributions are shown below

Kinematical effects $(m_t > m_H > m_W)$: τ/b

Therefore, a good discriminating variable would be the ratio between the τ energy or p_T and the b-jet energy or p_T . The distributions are shown below.

Charged Higgs mass. Single Top channel

The single top t-channel diagrams are generated too.

The advantage of this channel is that it allows for a measurement of the H^+ mass as all the missing E_T comes from just one neutrino. The usual transverse mass, defined as in the W mass measurement is

$$m_T^W = \sqrt{2p_T^{
ho}E_T^{miss}(1-\cos(\Delta\phi))}$$

Where $\Delta\phi$ is the angle between the $\tau-jet$ and the reconstructed missing E_T . This variable provides a good discrimination between signal and background, but it doesn't allow us to measure the mass. To avoid this, we define the transverse mass as (Gross, Vitells [arXiv:0907.5367])

$$(m_T^H)^2 = \left(\sqrt{m_t^2 + (\vec{p}_T^{
ho} + \vec{p}_T^{b} + \vec{p}_T^{miss})^2} - p_T^{b}\right)^2 - (\vec{p}_T^{
ho} + \vec{p}_T^{miss})^2$$

Charged Higgs mass. Single Top channel

The distributions for the two transverse masses defined above are shown in the following plots for the signal and background processes.

Top quark pair production. TMVA results

For the $t\bar{t}$ channel, we use all those variables described above (except the transverse masses) to train a Decorrelated Boosted Decision Tree (BDTD) using TMVA. The results for the BDTD response functions for each m_H studied are shown below.

Top quark pair production. TMVA results

The ROC curves (Signal efficiency vs. Background rejection) for the $t\bar{t}$ channel are shown in the following plots.

Single Top production. TMVA results

For the single top channel, we use all the variables (including the two definitions of the transverse mass) to train a Decorrelated Boosted Decision Tree (BDTD) using TMVA. The results for the BDTD response functions for each m_H studied are shown below.

Single Top production. TMVA results

The ROC curves (Signal efficiency vs. Background rejection) for the single Top channel are shown in the following plots.

Conclusions

- TMVA results show that a big significance wrt irreducible background can be achieved. Considering $\tan \beta \simeq 10$ and $m_H = 90$ GeV, the significance can be estimated to be $S \sim 30(25)$ for the $t\bar{t}$ and the single top channels, respectively.
- This estimated significance will reduce when taking into account the non-ttbar SM background (mainly W/Z +jets and di-boson production). It has been shown that these backgrounds can be efficiently separated from the SM $t\bar{t}$ signal.
- As seen before, the separation achieved increases as m_H grows . However, as seen on slide 1, the branching fraction $\mathfrak{B}(t \to H^+ b)$ decreases as m_H grows, and both effects somehow compensates.