Enhancement of $H \to \gamma \gamma$ from Charged Higgs Bosons in the Higgs Triplet Model

Stefano Moretti

NEXT Institute, SHEP & RAL-PPD, UK

- ullet Observation of a Higgs boson with mass \sim 125 GeV at the LHC
- Is it the minimal SM Higgs boson or from a non-minimal Higgs sector?
- BR $(H \to \gamma \gamma)$ might be higher than that of the SM Higgs boson
- Higgs Triplet Model (HTM) and singly/doubly charged scalars $(H^{\pm}/H^{\pm\pm})$
- The decay channel $H_1 \to \gamma \gamma$ and enhancement from virtual $H^{\pm}/H^{\pm\pm}$

Collaborator: Andrew Akeroyd (Soton, UK), Phys. Rev. D 86 (2012) 035015

Charged 2012, Uppsala, 8-11 October 2012

LHC evidence of a Higgs Boson with mass ~ 125 GeV

- ullet Compelling evidence for a neutral boson $m_H \sim 125$ GeV
- ATLAS 5.9σ and CMS 5σ (combining 7 and 8 TeV data)
- ullet Strongest signal in channels $|H
 ightarrow \gamma \gamma$ and H
 ightarrow ZZ
- Some evidence for $H \to WW$: no evidence yet for $H \to \tau^+\tau^-$
- ullet Hint of H o bb from Tevatron via WH,ZH (LHC sensitivity still inferior)
- Event numbers consistent (within errors) with the signal expected for the SM Higgs boson

Strongest LHC signal from $H \to \gamma \gamma$

- ullet Search is mainly sensitive to $gg \to H \to \gamma \gamma$
- Subdominant contributions from $pp \to WH, ZH, Hjj, Ht\bar{t}$
- ATLAS: local significance of excess at ~ 125 GeV is 4.5σ
- \bullet CMS: local significance of excess at \sim 125 GeV is 4.1σ

Hint of an enhanced BR $(H \rightarrow \gamma \gamma)$ with $m_H \sim 125$ GeV?

Hint of an enhanced BR $(H \to \gamma \gamma)$ with $m_H \sim 125$ GeV?

- ATLAS: $\sigma_{\gamma\gamma}/\sigma_{SM}=1.9\pm0.5$
- CMS: $\sigma_{\gamma\gamma}/\sigma_{SM}=1.56\pm0.43$
- ullet Average of the above searches for $H \to \gamma \gamma$ gives Raidal et al 12:

$$BR(H \rightarrow \gamma \gamma)/BR(H \rightarrow \gamma \gamma)_{SM} = 1.6 \pm 0.3$$

- ullet Error in $\sigma_{\gamma\gamma}/\sigma_{SM}$ will be reduced in 8 TeV run and 13 TeV run
- \bullet $\sigma_{\gamma\gamma}/\sigma_{SM}>1$ explained by a non-minimal Higgs sector

The Higgs Triplet Model, HTM

Motivation → neutrino mass generation

- \bullet Non-minimal Higgs sector with scalar triplet of isospin I=1
- Tree-level mass for ν ("Type II seesaw mechanism")
- This model is in the textbooks ("a classic model")

In this talk I will discuss the Higgs Triplet Model

Konetschny/Kummer 77, Schechter/Valle 80, Cheng/Li 80

• Predicts a "Doubly Charged Higgs Boson", $H^{\pm\pm}$ (twice the electric charge of e^\pm): rather obvious way to enhance $H\to\gamma\gamma$!

Higgs Triplet Model (HTM)

SM Lagrangian with one $SU(2)_L$ I=1,Y=2 complex scalar triplet T:

$$T = (T_1, T_2, T_3); \quad \Delta = T.t = T_1t_1 + T_2t_2 + T_3t_3 = \begin{pmatrix} \delta^+/\sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+/\sqrt{2} \end{pmatrix}$$

Higgs potential invariant under $SU(2)_L \otimes U(1)_Y$: $m^2 < 0$, $M_{\Delta}^2 > 0$

$$V = m^{2}(\Phi^{\dagger}\Phi) + \lambda(\Phi^{\dagger}\Phi)^{2} + M_{\Delta}^{2}\operatorname{Tr}(\Delta^{\dagger}\Delta)$$

$$+\lambda_i$$
 (quartic terms) $+\frac{1}{\sqrt{2}}\mu(\Phi^T i\tau_2\Delta^{\dagger}\Phi) + h.c$

Triplet vacuum expectation value: $|<\delta^0>=v_\Delta\sim \mu v^2/M_\Delta^2$

 $(v_{\Delta} \lesssim 5 \text{ GeV to keep } \rho = (M_Z^2 \cos^2 \theta_W)/M_W^2 \sim 1); \ \Delta \text{ has } L\# = 2 \text{ and so } \mu(\Phi^T i \tau_2 \Delta^\dagger \Phi) \text{ violates lepton number } 0$

Higgs boson spectrum

The HTM has 7 Higgs bosons: $H^{\pm\pm}, H^{\pm}, A^0, H_2, H_1$

- $H^{\pm\pm}$ is purely triplet: $H^{\pm\pm} \equiv \delta^{\pm\pm}$
- H^{\pm}, A^0, H_2, H_1 are mixtures of doublet (ϕ) and triplet (δ) fields
- Mixing $\sim v_{\Delta}/v$ and small $(v_{\Delta}/v < 0.03)$
- H_1 plays role of SM Higgs boson (essentially I=1/2 doublet)
- H^{\pm}, H_2, A^0 are dominantly composed of triplet fields
- Masses of $H^{\pm\pm}, H^{\pm}, H_2, A^0$ close to degenerate $\sim M_{\Delta}$
- ullet For $H^{\pm\pm}$, H^{\pm} in range at LHC require $M_{\Delta} < 1$ TeV

Scalar masses in terms of the input parameters

$$\begin{split} m_{H_1}^2 &= \frac{\lambda}{2} v^2 \quad \text{(as in the SM}, \sim 125 \text{GeV}) \\ m_{H^{\pm\pm}}^2 &= M_{\Delta}^2 + \frac{\lambda_1}{2} v^2 + \lambda_2 v_{\Delta}^2 \\ m_{H^{\pm}}^2 &= M_{\Delta}^2 + (\frac{\lambda_1}{2} + \frac{\lambda_4}{4}) v^2 + (\lambda_2 + \sqrt{2}\lambda_3) v_{\Delta}^2 \\ m_{H_2}^2 &= M_{\Delta}^2 + (\frac{\lambda_1}{2} + \frac{\lambda_4}{2}) v^2 + 3(\lambda_2 + \lambda_3) v_{\Delta}^2 \\ m_{A^0}^2 &= M_{\Delta}^2 + (\frac{\lambda_1}{2} + \frac{\lambda_4}{2}) v^2 + (\lambda_2 + \lambda_3) v_{\Delta}^2 \end{split}$$

Terms proportional to v_{Δ}^2 are negligible; $\lambda_4 \neq 0$ causes splitting among $m_{H^{\pm\pm}}, m_{H^{\pm}}, m_{H_2}, m_{A^0}$

Masses of the Higgs bosons in the HTM as a function of μ ($\sim v_{\Delta}M_{\Delta}^2/v^2$)

Triplet scalars close to degenerate, and $H^{\pm\pm}$ is the lightest of them for $\lambda_4>0$

Akeroyd/Chia

Couplings of H_1 to fermions and bosons in the HTM

 H_1 (lightest CP-even scalar) is essentially SM-like in most of the parameter space: $H_1 = \cos \alpha \ h^0 + \sin \alpha \Delta^0$

$$g_{H_1 t \bar{t}} = \cos \alpha / \cos \beta'$$

$$g_{H_1 b \bar{b}} = \cos \alpha / \cos \beta'$$

$$g_{H_1 WW} = \cos \alpha + 2 \sin \alpha v_{\Delta} / v$$

$$g_{H_1 ZZ} = \cos \alpha + 4 \sin \alpha v_{\Delta} / v$$

One has $\cos \alpha \sim \sqrt{(1 - 4v_{\Delta}^2/v^2)} \sim 1$ and $\cos \beta' = \sqrt{(1 - 2v_{\Delta}^2/v^2)} \sim 1$

Ongoing searches for SM Higgs apply to H_1 of the HTM

Contribution of $H^{\pm\pm}$ and H^{\pm} to $H_1 \to \gamma \gamma$ Arhrib 11; Kanemura 12

 $H_1 o \gamma \gamma$ is a loop-induced process o sensitive to charged scalars

SM diagrams are mediated by W and charged fermions, which interfere destructively

 \bullet $H^{\pm\pm}$ loop contribution has an enhancement factor of 4 relative to H^\pm loop due to its electric charge

$$\Gamma(H_1 \to \gamma \gamma) = \frac{G_F \alpha^2 m_{H_1}^3}{128\sqrt{2}\pi^3} \Big| \sum_f N_c Q_f^2 g_{H_1 f f} A_{1/2}^{H_1}(\tau_f) + g_{H_1 W W} A_1^{H_1}(\tau_W) + \tilde{g}_{H_1 H^{\pm} H^{\mp}} A_0^{H_1}(\tau_{H^{\pm}}) + 4\tilde{g}_{H_1 H^{\pm\pm} H^{\mp\mp}} A_0^{H_1}(\tau_{H^{\pm\pm}}) \Big|^2$$

where $\tau_i = m_{H_1}^2/4m_i^2$ and scalar trilinear couplings are:

$$ilde{g}_{H_1H^{++}H^{--}} \sim rac{m_W}{gm_{H^{\pm\pm}}^2} \lambda_1 v \quad (ext{and} \ m_{H^{\pm\pm}}^2 = M_\Delta^2 + rac{\lambda_1 v^2}{2})$$
 $ilde{g}_{H_1H^+H^-} \sim rac{m_W}{gm_{H^\pm}^2} (\lambda_1 + rac{\lambda_4}{2}) v$

and λ_1 and λ_4 appear in scalar potential as $\lambda_1(H^{\dagger}H) \text{Tr} \Delta^{\dagger} \Delta + \lambda_4 H^{\dagger} \Delta \Delta^{\dagger} H$

Magnitude of scalar-loop contributions

- ullet Coupling $ilde{g}_{H_1H^{++}H^{--}}$ depends on λ_1 only
- ullet Main theoretical constraint on λ_i comes from stability of scalar potential, e.g.

$$\lambda_1 + \sqrt{\lambda(\lambda_2 + \frac{\lambda_3}{2})} > 0$$

- ullet Only positive λ_1 considered in previous studies Arhrib 11, Kanemura 12
- ullet λ_1 could be negative Akeroyd/Moretti 12

Case of $\lambda_1 < 0$ and constructive interference of $H^{\pm\pm}$ and W

- ullet Arhrib 11 Considered $0 < \lambda_1 < 10$ (Destructive interference)
- ightarrow discussed enhancements/suppressions of $\mathsf{BR}(H_1
 ightarrow \gamma \gamma)$
- ullet Kanemura 12 Considered $\lambda_1>0$
- ightarrow discussed suppression of $\mathsf{BR}(H_1
 ightarrow \gamma \gamma)$
- For sufficiently positive λ_2, λ_3 , the range $-3 < \lambda_1 < 0$ can be considered (Constructive interference) Akeroyd/Moretti 12
- \bullet Varying λ_2,λ_3 has negligible effect on $m_{H^{\pm\pm}}$ and $\tilde{g}_{H_1H^{++}H^{--}}$

Amplitudes of the contributions to $H_1 \to \gamma \gamma$ from $W, t, H^{\pm \pm}$ and H^{\pm}

 $H^{\pm\pm}$ constructive (destructive) with W loop for $\lambda_1<0$ $(\lambda_1>0)$ Akeroyd/Moretti 12

Definition of $R_{\gamma\gamma}$

LHC searches constrain $BR(H \to \gamma \gamma)_{model}/BR(H \to \gamma \gamma)_{SM}$ where the model has exactly SM production cross section (dominant contribution from $gg \to H$) We define:

$$R_{\gamma\gamma} = \frac{(\Gamma(H_1 \to gg) \times \mathsf{BR}(H_1 \to \gamma\gamma))^{HTM}}{(\Gamma(H \to gg) \times \mathsf{BR}(H \to \gamma\gamma))^{SM}}$$

- ullet $R_{\gamma\gamma}=1.6\pm0.3$ for $m_H=125$ GeV Raidal et al 12
- $\Gamma(H_1 \to gg)/\Gamma(H_1 \to gg) \sim \cos^2 \alpha \sim 1$; $VVH \sim \cos \alpha \sim 1$

The ratio $R_{\gamma\gamma}$ in the plane $[\lambda_1,m_{H^{\pm\pm}}]$ for $150\,{
m GeV} < m_{H^{\pm\pm}} < 600\,$ GeV, with $m_{H_1} \sim 125\,$ GeV

 $R_{\gamma\gamma}>1$ for $\lambda_1<0$ Akeroyd/Moretti 12 LHC measurement: $R_{\gamma\gamma}=1.6\pm0.3$

Constraints on $[\lambda_1, m_{H^{\pm\pm}}]$ from $H_1 \to \gamma \gamma$

- Ongoing searches for $H_1 \to \gamma \gamma$ probe $[\lambda_1, m_{H^{\pm\pm}}]$
- ullet For $\lambda_1>0$, sizeable parameter space for $R_{\gamma\gamma}<1$
- ightarrow this region is now disfavoured due to $R_{\gamma\gamma} \sim 1.6 \pm 0.3$
- ullet For $\lambda_1>0$ and <0 a parameter space for $R_{\gamma\gamma}>1$
- If preference for $R_{\gamma\gamma}>1$ strengthens then
- i) large positive λ_1 and $m_{H^{\pm\pm}} < 200$ GeV Arhrib 11, or
- ii) small negative λ_1 and $m_{H^{\pm\pm}} <$ 400 GeV Akeroyd/Moretti 12

Magnitude of contribution of H^\pm loop to $R_{\gamma\gamma}$ for several m_{H^\pm}

Contribution of H^{\pm} for $m_{H^{\pm}} \neq m_{H^{\pm\pm}}$ can give $\pm 10\%$ effect Akeroyd/Moretti 12

Mass limits on $m_{H^{\pm\pm}}$ from CMS/ATLAS searches for $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$

Mass limit $m_{H^{\pm\pm}} >$ 400 GeV for benchmark points in HTM

Impact of mass limit on $m_{H^{\pm\pm}}$ on $H_1 o \gamma \gamma$

- ullet Limit of $m_{H^{\pm\pm}} >$ 400 GeV in benchmark points in HTM
- Applies to case of Σ BR(H $^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$) \sim 1 (i.e. $v_{\Delta} <$ 0.1 MeV)
- Limit weakened for points where $BR(H^{\pm\pm} \to \tau^{\pm}\tau^{\pm})$ large
- However, $H^{\pm\pm} \to W^{\pm}W^{\pm}$ dominates for $v_{\Delta} > 0.1$ MeV
- No searches for $H^{\pm\pm} \to W^{\pm}W^{\pm}$, but could be readily done
- ullet $m_{H^{\pm\pm}}$ as light as 150 GeV allowed (simulation in Chiang/Nomura/Tsumura 12)
- For $m_{H^{\pm\pm}} = 150(400)$ GeV: $R_{\gamma\gamma} = 4.5, 3.1, 1.9 (1.3, 1.2, 1.1)$

for
$$\lambda_1 = -3, -2, -1$$

Conclusions

- ullet Evidence for a Higgs boson in channels $H o \gamma \gamma/H o ZZ$
- Could be the first scalar of a non-minimal Higgs sector
- ullet Future data might prefer ${\sf BR}(H o \gamma \gamma)$ higher than SM prediction
- Doubly charged Higgs bosons appear in the HTM
 Model of neutrino mass generation
- $H^{\pm\pm}$ would contribute to (and could enhance) $H \to \gamma \gamma$
- $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$ or $H^{\pm\pm} \to W^{\pm}W^{\pm}$ is a distinctive signal
- ullet HTM has rich phenomenology at the LHC if $m_{H^{\pm\pm}} < 1$ TeV
- HTMDecay.f code available for public use