A Radiative type-I seesaw model via TeV scale B-L breaking and its phenomenology.

Takehiro Nabeshima University of Toyama

S. Kanemura, T.N., H. Sugiyama, Phys. Rev. D85, 033004 S. Kanemura, T.N., H. Sugiyama, arXiv:1207.7061

Charged 2012 11 Oct. 2012

1.Introduction

Neutrino masses

This case is very simple.

It would be difficult to test at collider experiments

Loop level (radiative seesaw)

 $\Phi \qquad \Phi \qquad Ma (2006)$ $\eta \qquad \eta \qquad \eta \qquad \eta$ $\nu_{L}^{i} \qquad \nu_{R} \qquad \nu_{L}^{k}$ $M \sim O(1) \text{ TeV}$ $\rightarrow c \sim O(10^{-4})$

This case could allow sizable coupling constants.

Dark matter is naturally supplied.

1.Introduction

The O(0.1) eV neutrino masses can be naturally deduced from TeV scale physics with O(0.01-0.1) coupling constant

 $U(1)_{B-L}$ anomaly

Our model focus to explain TeV scale physics.

 $U(1)_{B-L}$ anomaly would be resolved by some heavy singlet fermions with appropriate B-L charge.

For example;Right hand: 1×9 , $-1/2 \times 14$, $1/3 \times 9$ left hand: $3/2 \times 14$, $-5/3 \times 9$

(B-L charge, # of fields)

 $U(1)_{B-L}$ anomaly is not serious

Z' mass: O(1-10)TeV $\Gamma(Z' \rightarrow XX) \propto (B-L \text{ charge})^2$ Z' decay into invisible about 30%

Z' production cross section is 70 fb at the LHC for $\sqrt{s} = 14$ TeV , $M_{Z'}= 2000$ GeV and $g_{B-L}= 0.2$

 $U(1)_{B-L}$ symmetry could be tested by measuring decay of the Z' at the LHC.

L. Basso, A. Belyaev, S.Moretti and C. H. Shepherd-Themistocleous (2009); L.Basso (2011)

However, if we detect only Z' boson, our model cannot be distinguished other U(1)_{B-L} models.

Dark matter & right handed neutrino

We focus on e^- , $e^+ \rightarrow e^-$ (or μ^-), W⁺ + ∉ processes. If this cross section is large, non-stable right handed neutrino exists at O(100) GeV.

Dark matter can be tested with $1ab^{-1}$ data: at the \sqrt{s} = 350GeV for $M_{DM} \lesssim 64$ GeV at 3σ C.L. at the \sqrt{s} = 500GeV at 5σ C.L.

Two SM-like Higgs bosons would be separated at the ILC if these mass difference is about more than 50 MeV.

5.Conclusion

We consider possibility of testing the radiative type-I seesaw model in which $U(1)_{B-1}$ gauge symmetry is the common origin of neutrino masses, the dark matter mass, and stability of the dark matter. (2) Z' boson could be tested at the LHC. 3 Dark matter Ψ_1 can be tested with 1 ab⁻¹data: at \sqrt{s} = 350 GeV with M_{DM} \lesssim 64 GeV at 3 σ C.L.. at $\sqrt{s} = 500$ GeV at 5σ C.L. (5) Right handed neutrino could be tested at 3σ C.L. at $\sqrt{s} = 1$ TeV with 3 ab⁻¹data.

6 ILC have potential which distinguish our model.

Back up

Experimental bound(XENON100): $\sigma(\Psi_1 N \rightarrow \Psi_1 N) < 2 \times 10^{-45} \text{cm}^2$ XENON collaboration (2012)

Consistent with current experimental bound.

- 1. In the signal processes, Electron tend to be emitted forward region.
- We assume detectable area of electron 30 mrad and
 20 mrad for 350 GeV and 500 GeV collider respectively

- 1. In our model, $f_{\tau j}$ coupling can take larger value than $f_{\mu j}$ coupling.
- 2. Signal cross section increase about 100 times more than e, $E \rightarrow e$, μ , p processes in our parameter set.
- 3. Background are same value to e, $E \rightarrow e$, μ , p processes.

 Ψ_1 would be tested by invisible decay of h at \sqrt{s} =350 GeV with 500fb⁻¹ at 3 σ C.L.

- 1. In our model, dark matter and electron are coupled via the $L\psi\eta$ coupling
- 2. The energy momentum conservation is used to detect the dark matter.
- 3. If this cross section is large, dark matter would be directly coupled to charged lepton.

- 1. In our parameter set, $v_R \rightarrow W^{\pm}$, I^{\mp} is main decay mode.
- 2. We consider $W \rightarrow jet$, jet process.
- 3. If this cross section is large, non-stable right handed neutrino exist at O(100) GeV.