Outline: - n Tauonic B decays - $n \rightarrow TV$ - $n \rightarrow DTV$ - $n \rightarrow D^*TV$ - n Two Higgs Doublet Models - n Type II - n Type III - n 2HDM III and the MSSM - n Conclusions #### Tauonic B decays - Tree-level decays in the SM via W-boson - Sensitive to a charged Higgs due to the heavy tau lepton in the final state. | Observable | SM | Experiment | Significance | |---------------------------------------|--|----------------------------------|--------------| | $Br[B \to \tau \nu]$ | $(0.719^{+0.115}_{-0.076}) \times 10^{-4}$ | $(1.15 \pm 0.23) \times 10^{-4}$ | 1.6σ | | $Br[B \to D\tau v]/Br[B \to D \ v]$ | 0.297 ± 0.017 | 0.440 ± 0.072 | 2.0σ | | $Br[B \to D^*\tau v]/Br[B \to D^* v]$ | 0.252 ± 0.003 | 0.332 ± 0.030 | 2.7σ | All three observables are above the SM prediction $$Br[B \to \tau V] = \frac{G_F^2 |V_{ub}|^2}{8\pi} m_\tau^2 f_B^2 m_B \left(1 - \frac{m_\tau^2}{m_B^2} \right) \tau_B \left| 1 + \frac{m_B^2}{m_b m_t} \frac{C_R^{ub} - C_L^{ub}}{C_{SM}^{ub}} \right|^2$$ - _n V_{ub} can be determined from - B→πlv - inclusive decay - Global fit to the CKM matrix Different determinations do not agree V_{ub} problem #### B→D(*)_{TV} $$R(D) = \frac{\operatorname{Br}\left[B \to D\tau v\right]}{\operatorname{Br}\left[B \to D^* v\right]} = R_{SM}(D) \left(1 + 1.5\operatorname{Re}\left[\frac{C_R^{cb} + C_L^{cb}}{C_{SM}^{cb}}\right] + 1.0\left|\frac{C_R^{cb} + C_L^{cb}}{C_{SM}^{cb}}\right|^2\right)$$ $$R(D^*) = \frac{\operatorname{Br}\left[B \to D^* \tau v\right]}{\operatorname{Br}\left[B \to D^* v\right]} = R_{SM}(D^*) \left(1 + 0.12\operatorname{Re}\left[\frac{C_R^{cb} - C_L^{cb}}{C_{SM}^{cb}}\right] + 0.05\left|\frac{C_R^{cb} - C_L^{cb}}{C_{SM}^{cb}}\right|^2\right)$$ - S Form factors uncertainties drop out to a large extend in the rations R(D) and R(D*). - S R(D*) less sensitive to NP - S C_R cannot explain R(D) and $R(D^*)$ simultaneously but C_L can. ### 2HDM of type II - only to down-quarks the other Higgs doublet only to up-quarks. - 2 additional free parameters: $tan(β)=v_u/v_d$ and the heavy Higgs mass M_H - Neutral Higgs-quark couplings are flavourconserving. - n Chagred Higgs contribution to b→sγ requires m_H > 380 GeV T. Hermann, M. Misiak and M. Steinhauser 1208.2788 ### Tauonic B decays in the 2HDM II $$C_R^{qb} = \frac{-1}{m_{H^{\pm}}^2} V_{qb} \frac{m_b m_{\tau}}{v^2} \tan^2(\beta)$$ $$C_L^{qb} \approx 0$$ - Contribution to B→τν necessarily destructive. - tan $(\beta)/m_{H^{\pm}}$ needed for R(D*) too large. - n Cannot explain B→D^(*)TV and B→DTV simultaneously. BaBar collaboration 1205.5442 arXiv:1205.5442 #### 2HDM of type III Both Higgs doublets couple simultaneously to up and down quarks Flavour-changing neutral Higgs couplings - All flavour-changing elements \mathcal{E}_{fi}^d and $\mathcal{E}_{12,21}^u$ are constrained from FCNCs processes. - Also $\mathcal{E}_{13,23}^u$ constrained from charged Higgs diagrams, but $\mathcal{E}_{31,32}^u$ is unconstrained. - Contribution to tauonic B decays $\mathcal{E}_{31,32}^{u} \text{ unconstrained from FCNCs} \qquad \mathcal{E}_{L}^{qb} \approx \frac{\mathcal{E}_{3q}^{u^*}}{m_{H^{\pm}}^2} \frac{m_{\tau}}{v} \tan(\beta)$ - n 2HDM III with MFV cannot explain B→τν, B→D(*)τν and B→Dτν #### 2HDM of type III with flavourviolation in the up-sector A.C., C. Greub, A. Kokulu 1208.2788 - n Constructive contribution to B \rightarrow tv using \mathcal{E}_{31}^u is possible. - B \to D(*)tv and B \to Dtv can be explained simultaneously using \mathcal{E}_{32}^u . Check model via tv0, tv0 tv Allowed regions from: ## Effective Higgs-quark-quark vertices in the MSSM #### MSSM and the decoupling limit Effective Higgs vertices generate important threshold corrections to the relation between Yukawa couplings and quark masses. Resummation of all $(tan(\beta))$ enhanced contribution necessary. L. Hall, R. Rattazzi, U. Sarid hep-ph/9306309, A.C., L. Hofer, J. Rosiek, arXiv:1103.4272 - MSSM corrections are too small to generate $\mathcal{E}^{u}_{32,31}$ needed for $B \rightarrow \tau v$ and $B \rightarrow D^{(*)} \tau v$. - NLO calculation in preparation including analytic results and tan(β) resummation in the generic MSSM. Δ_b at order α_s^2 A.C., Christoph Greub arXiv:1012.xxxx #### Conclusions - First hints for violation of lepton universality tauonic B-decays. - ⁿ 2HDM II disfavored by current data. - ⁿ 2HDM of type III with flavour-violation in the up-sector can explain the $B\to TV$, $B\to D^*TV$ and $B\to DTV$. - 2HDM III is the decoupling limit of the MSSM NLO matching is important. # Effects of a right-handed W-coupling on V_{ub}