

#### **Outline:**

- n Tauonic B decays
  - $n \rightarrow TV$
  - $n \rightarrow DTV$
  - $n \rightarrow D^*TV$
- n Two Higgs Doublet Models
  - n Type II
  - n Type III
- n 2HDM III and the MSSM
- n Conclusions

#### Tauonic B decays

- Tree-level decays in the SM via W-boson
- Sensitive to a charged Higgs due to the heavy tau lepton in the final state.

| Observable                            | SM                                         | Experiment                       | Significance |
|---------------------------------------|--------------------------------------------|----------------------------------|--------------|
| $Br[B \to \tau \nu]$                  | $(0.719^{+0.115}_{-0.076}) \times 10^{-4}$ | $(1.15 \pm 0.23) \times 10^{-4}$ | $1.6\sigma$  |
| $Br[B \to D\tau v]/Br[B \to D \ v]$   | $0.297 \pm 0.017$                          | $0.440 \pm 0.072$                | $2.0\sigma$  |
| $Br[B \to D^*\tau v]/Br[B \to D^* v]$ | $0.252 \pm 0.003$                          | $0.332 \pm 0.030$                | $2.7\sigma$  |



All three observables are above the SM prediction

$$Br[B \to \tau V] = \frac{G_F^2 |V_{ub}|^2}{8\pi} m_\tau^2 f_B^2 m_B \left( 1 - \frac{m_\tau^2}{m_B^2} \right) \tau_B \left| 1 + \frac{m_B^2}{m_b m_t} \frac{C_R^{ub} - C_L^{ub}}{C_{SM}^{ub}} \right|^2$$

- <sub>n</sub> V<sub>ub</sub> can be determined from
  - B→πlv
  - inclusive decay
  - Global fit to the CKM matrix

Different determinations do not agree



V<sub>ub</sub> problem



#### B→D(\*)<sub>TV</sub>

$$R(D) = \frac{\operatorname{Br}\left[B \to D\tau v\right]}{\operatorname{Br}\left[B \to D^* v\right]} = R_{SM}(D) \left(1 + 1.5\operatorname{Re}\left[\frac{C_R^{cb} + C_L^{cb}}{C_{SM}^{cb}}\right] + 1.0\left|\frac{C_R^{cb} + C_L^{cb}}{C_{SM}^{cb}}\right|^2\right)$$

$$R(D^*) = \frac{\operatorname{Br}\left[B \to D^* \tau v\right]}{\operatorname{Br}\left[B \to D^* v\right]} = R_{SM}(D^*) \left(1 + 0.12\operatorname{Re}\left[\frac{C_R^{cb} - C_L^{cb}}{C_{SM}^{cb}}\right] + 0.05\left|\frac{C_R^{cb} - C_L^{cb}}{C_{SM}^{cb}}\right|^2\right)$$

- S Form factors uncertainties drop out to a large extend in the rations R(D) and R(D\*).
- S R(D\*) less sensitive to NP
- S  $C_R$  cannot explain R(D) and  $R(D^*)$  simultaneously but  $C_L$  can.



### 2HDM of type II

- only to down-quarks the other Higgs doublet only to up-quarks.
- 2 additional free parameters:  $tan(β)=v_u/v_d$  and the heavy Higgs mass  $M_H$



- Neutral Higgs-quark couplings are flavourconserving.
- n Chagred Higgs contribution to b→sγ requires m<sub>H</sub> > 380 GeV T. Hermann, M. Misiak and M. Steinhauser 1208.2788

### Tauonic B decays in the 2HDM II

$$C_R^{qb} = \frac{-1}{m_{H^{\pm}}^2} V_{qb} \frac{m_b m_{\tau}}{v^2} \tan^2(\beta)$$

$$C_L^{qb} \approx 0$$

- Contribution to B→τν
   necessarily destructive.
- tan  $(\beta)/m_{H^{\pm}}$  needed for R(D\*) too large.
- n Cannot explain B→D<sup>(\*)</sup>TV and B→DTV simultaneously. BaBar collaboration 1205.5442





arXiv:1205.5442





#### 2HDM of type III

Both Higgs doublets couple simultaneously to up and down quarks
 Flavour-changing neutral Higgs couplings





- All flavour-changing elements  $\mathcal{E}_{fi}^d$  and  $\mathcal{E}_{12,21}^u$  are constrained from FCNCs processes.
- Also  $\mathcal{E}_{13,23}^u$  constrained from charged Higgs diagrams, but  $\mathcal{E}_{31,32}^u$  is unconstrained.
- Contribution to tauonic B decays  $\mathcal{E}_{31,32}^{u} \text{ unconstrained from FCNCs} \qquad \mathcal{E}_{L}^{qb} \approx \frac{\mathcal{E}_{3q}^{u^*}}{m_{H^{\pm}}^2} \frac{m_{\tau}}{v} \tan(\beta)$
- n 2HDM III with MFV cannot explain B→τν, B→D(\*)τν and B→Dτν

#### 2HDM of type III with flavourviolation in the up-sector

A.C., C. Greub, A. Kokulu 1208.2788

- n Constructive contribution to B $\rightarrow$ tv using  $\mathcal{E}_{31}^u$  is possible.
- B $\to$ D(\*)tv and B $\to$ Dtv can be explained simultaneously using  $\mathcal{E}_{32}^u$ . Check model via tv0, tv0 tv

Allowed regions from:











## Effective Higgs-quark-quark vertices in the MSSM



#### MSSM and the decoupling limit

Effective Higgs vertices generate important threshold corrections to the relation between Yukawa couplings and quark masses.

Resummation of all  $(tan(\beta))$  enhanced contribution necessary.

L. Hall, R. Rattazzi, U. Sarid hep-ph/9306309, A.C., L. Hofer, J. Rosiek, arXiv:1103.4272

- MSSM corrections are too small to generate  $\mathcal{E}^{u}_{32,31}$  needed for  $B \rightarrow \tau v$  and  $B \rightarrow D^{(*)} \tau v$ .
- NLO calculation in preparation including analytic results and tan(β) resummation in the generic MSSM.

 $\Delta_b$  at order  $\alpha_s^2$ 

A.C., Christoph Greub arXiv:1012.xxxx

#### Conclusions

- First hints for violation of lepton universality tauonic B-decays.
- <sup>n</sup> 2HDM II disfavored by current data.
- <sup>n</sup> 2HDM of type III with flavour-violation in the up-sector can explain the  $B\to TV$ ,  $B\to D^*TV$  and  $B\to DTV$ .
- 2HDM III is the decoupling limit of the
   MSSM NLO matching is important.

# Effects of a right-handed W-coupling on V<sub>ub</sub>

