

Outline:

n Tauonic B decays
n B \rightarrow TV
n $\mathrm{B} \rightarrow$ Div
n $\mathrm{B} \rightarrow \mathrm{D}^{*} \mathrm{TV}$
n Two Higgs Doublet Models
n Type II
n Type III
n 2HDM III and the MSSM
n Conclusions

Tauonic B decays

n Tree-level decays in the SM via W-boson
n Sensitive to a charged Higgs due to the heavy tau lepton in the final state.

Observable	SM	Experiment	Significance
$\operatorname{Br}[B \rightarrow \tau v]$	$\left(0.719_{-0.076}^{+0.115}\right) \times 10^{-4}$	$(1.15 \pm 0.23) \times 10^{-4}$	1.6σ
$\operatorname{Br}[B \rightarrow D \tau v] / \operatorname{Br}[B \rightarrow D \quad v]$	0.297 ± 0.017	0.440 ± 0.072	2.0σ
$\operatorname{Br}\left[B \rightarrow D^{*} \tau v\right] / \operatorname{Br}\left[B \rightarrow D^{*} \quad v\right]$	0.252 ± 0.003	0.332 ± 0.030	2.7σ

All three observables are above the SM prediction

$B \rightarrow T V$

$$
\operatorname{Br}[B \rightarrow \tau v]=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{8 \pi} m_{\tau}^{2} f_{B}^{2} m_{B}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right) \tau_{B}\left|1+\frac{m_{B}^{2}}{m_{b} m_{t}} \frac{C_{R}^{u b}-C_{L}^{u b}}{C_{S M}^{u b}}\right|^{2}
$$

n V_{ub} can be determined from
n $B \rightarrow$ itlv
n inclusive decay
n Global fit to the CKM matrix

Different determinations do not agree
$\longrightarrow \mathrm{V}_{\mathrm{ub}}$ problem

$B \rightarrow D^{(*)} T V$

$$
\begin{aligned}
& R(D)=\frac{\operatorname{Br}[B \rightarrow D \tau v]}{\operatorname{Br}[B \rightarrow D \quad v]}=R_{S M}(D)\left(1+1.5 \operatorname{Re}\left[\frac{C_{R}^{c b}+C_{L}^{c b}}{C_{S M}^{c b}}\right]+1.0\left|\frac{C_{R}^{c b}+C_{L}^{c b}}{C_{S M}^{c b}}\right|^{2}\right) \\
& R\left(D^{*}\right)=\frac{\operatorname{Br}\left[B \rightarrow D^{*} \tau v\right]}{\operatorname{Br}\left[B \rightarrow D^{*} v\right]}=R_{S M}\left(D^{*}\right)\left(1+0.12 \operatorname{Re}\left[\frac{C_{R}^{c b}-C_{L}^{c b}}{C_{S M}^{c b}}\right]+0.05\left|\frac{C_{R}^{c b}-C_{L}^{c b}}{C_{S M}^{c b}}\right|^{2}\right)
\end{aligned}
$$

§ Form factors uncertainties drop out to a large extend in the rations $R(D)$ and $R\left(D^{*}\right)$.
$\$ R\left(D^{*}\right)$ less sensitive to NP
$\$ C_{R}$ cannot explain $R(D)$ and
$R\left(D^{*}\right)$ simultaneously but
C_{L} can.

2HDM of type II

n One Higgs doublet couples only to down-quarks the other
 Higgs doublet only to up-quarks.
 heavy Higgs mass M_{H}
${ }_{n}$ Neutral Higgs-quark couplings are flavourconserving.
${ }^{n}$ Chagred Higgs contribution to $\mathrm{b} \rightarrow \mathrm{sy}$ requires $m_{H}>380 \mathrm{GeV}$ T. Hermann, M. Misiak and M. Steinhauser 1208.2788

Tauonic B decays in the 2HDM II

$C_{R}^{q b}=\frac{-1}{m_{H^{ \pm}}^{2}} V_{q b} \frac{m_{b} m_{\tau}}{v^{2}} \tan ^{2}(\beta)$
$C_{L}^{q b} \approx 0$

n Cannot explain $B \rightarrow D^{(*)} \mathrm{TV}$ and $\mathrm{B} \rightarrow$ Div simultaneously. BaBar collaboration 1205.5442
arXiv:1205.5442
\square measurement
\longrightarrow Disfavored by current data

2HDM of type III

n Both Higgs doublets couple simultaneously to up and down quarks \longrightarrow Flavour-changing neutral Higgs couplings

n All flavour-changing elements $\varepsilon_{f i}^{d}$ and $\varepsilon_{12,21}^{u}$ are constrained from FCNCs processes.
${ }_{n}$ Also $\varepsilon_{13,23}^{u}$ constrained from charged Higgs diagrams, but $\varepsilon_{31,32}^{u}$ is unconstrained.
Contribution to tauonic B decays
$\varepsilon_{31,32}^{u}$ unconstrained from FCNCs $\quad C_{L}^{q b} \approx \frac{\varepsilon_{3 q}^{u^{*}}}{m_{H^{ \pm}}^{2}} \frac{m_{\tau}}{v} \tan (\beta)$
n 2HDM III with MFV cannot explain $B \rightarrow T V, B \rightarrow D^{(*)} T V$ and $\mathrm{B} \rightarrow$ DTV

2HDM of type III with flavourviolation in the up-sector

A.C., C. Greub, A. Kokulu 1208.2788

n Constructive contribution to $\mathrm{B} \rightarrow \mathrm{TV}$ using ε_{31}^{u} is possible.
n $\mathrm{B} \rightarrow \mathrm{D}^{(*)}$ TV and $\mathrm{B} \rightarrow$ Div can be explained simultaneously using ε_{32}^{u}. \longrightarrow Check model via $H^{0}, A^{0} \rightarrow \overline{t c}$

Allowed regions from:

Effective Higgs-quark-quark vertices in the MSSM

$A C$, arsivail 012.4840

MSSM and the decoupling limit

n Effective Higgs vertices generate important threshold corrections to the relation between Yukawa couplings and quark masses.
\longrightarrow Resummation of all $(\tan (\beta))$ enhanced contribution necessary.
L. Hall, R. Rattazzi, U. Sarid hep-ph/9306309,
A.C., L. Hofer, J. Rosiek, arXiv:1103.4272
n MSSM corrections are too small to generate $\varepsilon_{32,31}^{u}$ needed for $\mathrm{B} \rightarrow \mathrm{TV}$ and $\mathrm{B} \rightarrow \mathrm{D}^{\left({ }^{*}\right)} \mathrm{TV}$.
n NLO calculation in preparation including analytic results and $\tan (\beta)$ resummation in the generic MSSM. Δ_{b} at order $\alpha_{s}^{2} \quad$ A.C., Christoph Greub arXiv:1012.xxxx

Conclusions

n First hints for violation of lepton universality tauonic B-decays.
n 2HDM II disfavored by current data.
n 2HDM of type III with flavour-violation in the up-sector can explain the $B \rightarrow T V, B \rightarrow D^{*} T V$ and $B \rightarrow$ Div.
n 2 HDM III is the decoupling limit of the MSSM \longrightarrow NLO matching is important.

Effects of a right-handed Wcoupling on V_{ub}

