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Outline	
  
•  Brief	
  introduc>on	
  of	
  2HDM-­‐III,	
  employing	
  four	
  zero	
  texture	
  in	
  

the	
  Yukawa	
  matrices.	
  

•  As	
  this	
  version	
  of	
  2HDM-­‐III	
  could	
  contain	
  the	
  other	
  versions	
  of	
  
2HDM.	
  

•  Flavor	
  contraints	
  at	
  low	
  energy	
  processes.	
  

•  Phenomenology	
  of	
  charged	
  Higgs	
  could	
  be	
  	
  quite	
  different.	
  

•  Some	
  interes>ng	
  decays	
  channels	
  of	
  H+:	
  
H+	
  à	
  cs,	
  cb,	
  	
  ts,	
  W	
  gamma,	
  W	
  Z	
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ξu
h ξd

h ξ!
h ξu

H ξd
H ξ!

H ξu
A ξd

A ξ!
A

Type-I cα/sβ cα/sβ cα/sβ sα/sβ sα/sβ sα/sβ cot β − cot β − cot β

Type-II cα/sβ −sα/cβ −sα/cβ sα/sβ cα/cβ cα/cβ cot β tan β tan β

Type-X cα/sβ cα/sβ −sα/cβ sα/sβ sα/sβ cα/cβ cot β − cot β tan β

Type-Y cα/sβ −sα/cβ cα/sβ sα/sβ cα/cβ sα/sβ cot β tan β − cot β

TABLE II: The mixing factors in Yukawa interactions in Eq. (6)

where the rotation matrix is given by

R(θ) =



cos θ − sin θ

sin θ cos θ



 . (5)

There are five physical Higgs bosons, i.e., two CP-even states h and H , one CP-odd state

A, and a pair of charged states H±, and z and ω± are Nambu-Goldstone bosons that are

eaten as the longitudinal components of the massive gauge bosons. The eight parameters

m2
1–m

2
3 and λ1–λ5 in the Higgs sector are replaced by eight physical parameters: i.e., the

VEV v =
√

v2
1 + v2

2 " 246 GeV, the mixing angles α and β (tanβ = v2/v1), the Higgs boson

masses mh, mH , mA, mH±, and the soft breaking mass parameter M = m3/
√

sin β cos β. The

mixing angle α is defined such that h is the SM-like Higgs boson when sin(β − α) = 1.

The Yukawa interactions are expressed in terms of mass eigenstates of the Higgs bosons

as

LTHDM
yukawa = −

∑

f=u,d,!

(mf

v
ξf
hffh +

mf

v
ξf
HffH − i

mf

v
ξf
Afγ5fA

)

−

{√
2Vud

v
u

(
muξ

u
APL + mdξ

d
APR

)
d H+ +

√
2m!ξ!

A

v
νL)RH+ + H.c.

}

, (6)

where PL/R are projection operators for left-/right-handed fermions, and the factors ξf
ϕ are

listed in TABLE II.

For the successful electroweak symmetry breaking, a combination of quartic coupling

constants should satisfy the condition of vacuum stability [27, 28]. We also take into account

bounds from perturbative unitarity [29] to restrict parameters in the Higgs potential [30, 31].

The top and bottom Yukawa coupling constants cannot be taken too large. The requirement

|Yt,b|2 < π at the tree level can provide a milder constraint 0.4 ! tanβ ! 91, where

|Yt| = (
√

2/v)mt cotβ and |Yb| = (
√

2/v)mb tanβ.
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• There are three ways:

• (1) Discrete symmetries. This choice is based on the Glashow–Weinbergʼs theorem 
concerning FCNCʼs in models with several Higgs doublets.                                               
(MSSM: Y=-1 (+1) doublet copules to donw (up)-type fermion, as required by SUSY)

• (2) Radiative suppression. When a given set of Yukawa matrices are present at tree-level, 
but the other ones arise only as a radiative effect:    i.e. the 2HDM-II, it is transformed into 
2HDM-III through loops-effects of sfermions and gauginos. 

• (3) Flavor symmetries. Suppression of FCNC effects can also be achieved when a certain 
form of the Yukawa matrices that reproduce the observed fermion masses and mixing 
angles is implemented in the model, i.e. THDM-III. (Yukawa textures)

7
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2HDM-III +  Yukawa texture 
contain the following information:

 
It could come from a more fundamental theory  (susy models with 

seesaw mechanism).

+
Yukawa texture is the flavor symmetry of the model and do not 

require of the discrete flavor symmetry.

+

The Higgs potential must be expressed in the most general form. 

T. P. Cheng, M. Sher, Phys. Rev. D33,11 (1987)
J.L. Diaz-Cruz, R Noriega-Papaqui, A. Rosado. Phys. Rev. D69,095002 (2004)
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m!̃ mass limit. Rather, these modes decouple in the limit that the pseudoscalar Higgs
boson becomes heavy, mA → ∞, thus providing complementary information on the
supersymmetric (SUSY) spectrum.

Flavor Violation among the Sleptons. In the leptonic sector, we begin with a
Lagrangian:

− L = ERYELLHd + νRYνLL + 1
2ν

!
RMR νR (1)

where ER, LL and νR represent 3 × 1 matrices in flavor space of right-handed charged
leptons, left-handed lepton doublets and right-handed neutrinos, and YE, Yν and MR are
3 × 3 matrices in flavor space; for example, ER = (eR, µR, τR)!. This Lagrangian clearly
violates both family and total lepton number due to the presence of the νR Majorana
mass term. We can choose to work in a basis in which both YE and MR have been
diagonalized, but Yν remains an arbitrary, complex matrix.

Within the SM, O(1) flavor violation in the neutrinos does not translate into appre-
ciable flavor violation in the charged lepton sector due to 1/MR suppressions. But this
is not true in the slepton sector. The SUSY-breaking slepton masses are unprotected
by chiral symmetries and are therefore sensitive to physics at all mass scales between
mL̃ and the scale, M , at which SUSY-breaking is communicated to the visible sector,
assuming M > MR. This can be seen by examining the renormalization group equation
for m2

L̃
at scales above MR:

d

d log Q
(m2

L̃)ij =

(

d

d logQ
(m2

L̃)ij

)

MSSM

(2)

+
1

16π2

[

m2
L̃Y †

ν Yν + Y †
ν Yνm

2
L̃ + 2(Y †

ν m2
ν̃R

Yν + m2
Hu

Y †
ν Yν + A†

νAν)
]

ij

where the first term represents the (L-conserving) terms present in the usual MSSM at
scales below MR. Because Yν is off-diagonal, it will generate flavor-mixing in the slepton
mass matrix. We can solve this equation approximately for the flavor-mixing piece:

(

∆m2
L̃

)

ij
% −

log(M/MR)

16π2

(

6m2
0(Y

†
ν Yν)ij + 2

(

A†
νAν

)

ij

)

(3)

where m0 is a common scalar mass evaluated at the scale Q = M , and i &= j. If we
further assume that the A-terms are proportional to Yukawa matrices, then:

(

∆m2
L̃

)

ij
% ξ

(

Y †
ν Yν

)

ij
(4)

where

ξ = −
log(M/MR)

16π2
(6 + 2a2)m2

0. (5)

and a is O(1). In the simplest SUSY-breaking scenarios, gravity plays the role of mes-
senger and M = MP l, so that the logarithm in Eq. (5) is roughly 10.
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2. Effective Lagrangians and branching ratios for LFV processes. We now present the
calculational details we use in arriving at the approximate results of the previous Section
and the numerical results to be presented in the next Section. We consider the R-parity
conserving superpotential:

W = U c
i (Yu)ijQjH2 − Dc

i (Yd)ijQjH1 +

N c
i (Yν)ijLjH2 − Ec

i (Ye)ijLjH1 +
1

2
N c

i(MN )ijN
c
j + µH2H1 , (8)

where the indices i, j run over three generations and MN is the heavy singlet-neutrino mass
matrix. We work in a basis where (Yd)ij , (Ye)ij and (MN )ij are real and diagonal. At the
one-loop level, this leads to the effective Lagrangian [3, 5, 8, 14].

− Leff = d̄i
RYdi

[

δijH
0
1 + (ε0δij + εY ( Y †

u Yu )ij) H0∗
2

]

dj
L + h.c. +

l̄iRYei

[

δijH
0
1 + (ε1δij + ε2Eij) H0∗

2

]

ljL + h.c. , (9)

where ε0, εY , ε1, and ε2 are loop-induced form factors, and Eij = (∆m2
L̃
)ij/m2

0 is the unique
source of LFV. In the following, we present analytical expressions in the mass-insertion
approximation, which is simple and known to reproduce well the full results in the case of
large tanβ. However, in our numerical analyses of the next Section we use the full diagram-
matic calculation of the (b̄s)-Higgs transition of [4], which we modify according to [5] to
include the resummed large-tanβ contributions to the down-type Yukawa couplings. Also,
the LFV matrix Eij is calculated exactly using the numerical solutions to the full set of
renormalization-group equations of the MSSM, including singlet neutrinos [12].

In the mass-insertion approximation, the down-quark form factors are [5, 8]

ε0 =
2αs

3π

µMg̃

m2
d̃L

F2

(

xg̃d̃L
, xd̃Rd̃L

)

, εY =
1

16π2

µAu

m2
ũL

F2 (xµũL
, xũRũL

) , (10)

where xab = m2
a/m

2
b and

F2 (x, y) = −
x ln x

(1 − x)(x − y)
−

y ln y

(1 − y)(y − x)
. (11)

In the lepton sector, the corresponding form factors are [14]

ε1 =
α′

8π
µM1

[

2F3

(

M2
1 , m2

l̃L
, m2

l̃R

)

− F3

(

M2
1 , µ2, m2

l̃L

)

+ 2F3

(

M2
1 , µ2, m2

l̃R

)]

+

α2

8π
µM2

[

F3

(

µ2, m2
l̃L

, M2
2

)

+ 2F3

(

µ2, m2
ν̃ , M

2
2

)

]

, (12)

ε2 =
α′

8π
m2

0µM1

[

2F4

(

M2
1 , m2

l̃L
, m2

τ̃L
, m2

τ̃R

)

− F4

(

µ2, m2
l̃L

, m2
τ̃L

, M2
1

)]

+

α2

8π
m2

0µM2

[

F4

(

µ2, m2
l̃L

, m2
τ̃L

, M2
2

)

+ 2F4

(

µ2, m2
ν̃l
, m2

ν̃τ
, M2

2

)

]

, (13)

where

F3 (x, y, z) = −
xy ln(x/y) + yz ln(y/z) + zx ln(z/x)

(x − y)(y − z)(z − x)
,

4
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Mass matrix ansatz and lepton flavor violation in the two-Higgs doublet model-III
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Predictive Higgs-boson–fermion couplings can be obtained when a specific texture for the fermion mass
matrices is included in the general two-Higgs doublet model. We derive the form of these couplings in the
charged lepton sector using a Hermitian mass matrix ansatz with four-texture zeros. The presence of uncon-
strained phases in the vertices # il il j modifies the pattern of flavor-violating Higgs boson interactions. Bounds
on the model parameters are obtained from present limits on rare lepton flavor-violating processes, which could
be extended further by the search for the decay $→%%% and %-e conversion at future experiments. The signal
from Higgs boson decays # i→$% could be searched for at the CERN Large Hadron Collider, while e-%
transitions could produce a detectable signal at a future e% collider, through the reaction e!%"→h0

→$!$".

DOI: 10.1103/PhysRevD.69.095002 PACS number!s": 12.60.Fr, 12.15.Mm, 14.80.Cp

I. INTRODUCTION

After many years of the success of the standard model
!SM", the Higgs mechanism is still the least tested sector,
and the problem of electroweak symmetry breaking !EWSB"
remains almost as open as ever. However, the analysis of
radiative corrections within the SM &1' points toward the
existence of a light Higgs boson, which could be detected in
the early stages of the CERN Large Hadron Collider !LHC"
&2'. On the other hand, the SM is often considered as an
effective theory, valid up to an energy scale of O(TeV), and
eventually it will be replaced by a more fundamental theory,
which will explain, among other things, the physics behind
EWSB and perhaps even the origin of flavor. Several ex-
amples of candidate theories, which range from supersym-
metry &3' to deconstruction &4', include a Higgs sector with
two scalar doublets, which has a rich structure and predicts
interesting phenomenology &5'. The general two-Higgs dou-
blet model !THDM" has a potential problem with flavor
changing neutral currents !FCNC’s" mediated by the Higgs
bosons, which arises when each quark type (u and d) is
allowed to couple to both Higgs doublets, and FCNC’s could
be induced at large rates that may jeopardize the model. The
possible solutions to this problem of the THDM involve an
assumption about the Yukawa structure of the model. To dis-
cuss them it is convenient to refer to the Yukawa Lagrangian,
which is written for the quark fields as follows:

LY#Y 1
uQ̄L(1uR!Y 2

uQ̄L(2uR!Y 1
dQ̄L(1dR!Y 2

dQ̄L(2dR ,
!1"

where (1,2#(#1,2
! ,#1,2

0 )T denote the Higgs doublets. The
specific choices for the Yukawa matrices Y 1,2

q (q#u ,d) de-
fine the versions of the THDM known as I, II, and III, which
involve the following mechanisms, that are aimed either to
eliminate the otherwise unbearable FCNC problem or at least
to keep it under control.

!1" Discrete symmetries. A discrete symmetry can be in-
voked to allow a given fermion type (u or d quarks, for
instance" to couple to a single Higgs doublet, and in such
case FCNC’s are absent at the tree level. In particular, when
a single Higgs field gives masses to both types of quarks
!either Y 1

u#Y 1
d#0 or Y 2

u#Y 2
d#0), the resulting model is

referred as THDM-I. On the other hand, when each type of
quark couples to a different Higgs doublet !either Y 1

u#Y 2
d

#0 or Y 2
u#Y 1

d#0), the model is known as the THDM-II.
This THDM-II pattern is highly motivated because it arises
at the tree level in the minimal supersymmetry !SUSY" ex-
tension for the SM !MSSM" &5'.

!2" Radiative suppression. When each fermion type
couples to both Higgs doublets, FCNC’s could be kept under
control if there exists a hierarchy between Y 1

u ,d and Y 2
u ,d ,

namely, a given set of Yukawa matrices is present at the tree
level, but the other ones arise only as a radiative effect. This
occurs for instance in the MSSM, where the type-II THDM
structure is not protected by any symmetry and is trans-
formed into a type-III THDM !see below", through the loop
effects of sfermions and gauginos. That is, the Yukawa cou-
plings that are already present at the tree level in the MSSM
(Y 1

d ,Y 2
u) receive radiative corrections, while the terms

(Y 2
d ,Y 1

u) are induced at the one-loop level.
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I. INTRODUCTION

After many years of the success of the standard model
!SM", the Higgs mechanism is still the least tested sector,
and the problem of electroweak symmetry breaking !EWSB"
remains almost as open as ever. However, the analysis of
radiative corrections within the SM &1' points toward the
existence of a light Higgs boson, which could be detected in
the early stages of the CERN Large Hadron Collider !LHC"
&2'. On the other hand, the SM is often considered as an
effective theory, valid up to an energy scale of O(TeV), and
eventually it will be replaced by a more fundamental theory,
which will explain, among other things, the physics behind
EWSB and perhaps even the origin of flavor. Several ex-
amples of candidate theories, which range from supersym-
metry &3' to deconstruction &4', include a Higgs sector with
two scalar doublets, which has a rich structure and predicts
interesting phenomenology &5'. The general two-Higgs dou-
blet model !THDM" has a potential problem with flavor
changing neutral currents !FCNC’s" mediated by the Higgs
bosons, which arises when each quark type (u and d) is
allowed to couple to both Higgs doublets, and FCNC’s could
be induced at large rates that may jeopardize the model. The
possible solutions to this problem of the THDM involve an
assumption about the Yukawa structure of the model. To dis-
cuss them it is convenient to refer to the Yukawa Lagrangian,
which is written for the quark fields as follows:

LY#Y 1
uQ̄L(1uR!Y 2

uQ̄L(2uR!Y 1
dQ̄L(1dR!Y 2

dQ̄L(2dR ,
!1"

where (1,2#(#1,2
! ,#1,2

0 )T denote the Higgs doublets. The
specific choices for the Yukawa matrices Y 1,2

q (q#u ,d) de-
fine the versions of the THDM known as I, II, and III, which
involve the following mechanisms, that are aimed either to
eliminate the otherwise unbearable FCNC problem or at least
to keep it under control.

!1" Discrete symmetries. A discrete symmetry can be in-
voked to allow a given fermion type (u or d quarks, for
instance" to couple to a single Higgs doublet, and in such
case FCNC’s are absent at the tree level. In particular, when
a single Higgs field gives masses to both types of quarks
!either Y 1

u#Y 1
d#0 or Y 2

u#Y 2
d#0), the resulting model is

referred as THDM-I. On the other hand, when each type of
quark couples to a different Higgs doublet !either Y 1

u#Y 2
d

#0 or Y 2
u#Y 1

d#0), the model is known as the THDM-II.
This THDM-II pattern is highly motivated because it arises
at the tree level in the minimal supersymmetry !SUSY" ex-
tension for the SM !MSSM" &5'.

!2" Radiative suppression. When each fermion type
couples to both Higgs doublets, FCNC’s could be kept under
control if there exists a hierarchy between Y 1

u ,d and Y 2
u ,d ,

namely, a given set of Yukawa matrices is present at the tree
level, but the other ones arise only as a radiative effect. This
occurs for instance in the MSSM, where the type-II THDM
structure is not protected by any symmetry and is trans-
formed into a type-III THDM !see below", through the loop
effects of sfermions and gauginos. That is, the Yukawa cou-
plings that are already present at the tree level in the MSSM
(Y 1

d ,Y 2
u) receive radiative corrections, while the terms

(Y 2
d ,Y 1

u) are induced at the one-loop level.
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I. INTRODUCTION

After many years of the success of the standard model
!SM", the Higgs mechanism is still the least tested sector,
and the problem of electroweak symmetry breaking !EWSB"
remains almost as open as ever. However, the analysis of
radiative corrections within the SM &1' points toward the
existence of a light Higgs boson, which could be detected in
the early stages of the CERN Large Hadron Collider !LHC"
&2'. On the other hand, the SM is often considered as an
effective theory, valid up to an energy scale of O(TeV), and
eventually it will be replaced by a more fundamental theory,
which will explain, among other things, the physics behind
EWSB and perhaps even the origin of flavor. Several ex-
amples of candidate theories, which range from supersym-
metry &3' to deconstruction &4', include a Higgs sector with
two scalar doublets, which has a rich structure and predicts
interesting phenomenology &5'. The general two-Higgs dou-
blet model !THDM" has a potential problem with flavor
changing neutral currents !FCNC’s" mediated by the Higgs
bosons, which arises when each quark type (u and d) is
allowed to couple to both Higgs doublets, and FCNC’s could
be induced at large rates that may jeopardize the model. The
possible solutions to this problem of the THDM involve an
assumption about the Yukawa structure of the model. To dis-
cuss them it is convenient to refer to the Yukawa Lagrangian,
which is written for the quark fields as follows:

LY#Y 1
uQ̄L(1uR!Y 2

uQ̄L(2uR!Y 1
dQ̄L(1dR!Y 2

dQ̄L(2dR ,
!1"

where (1,2#(#1,2
! ,#1,2

0 )T denote the Higgs doublets. The
specific choices for the Yukawa matrices Y 1,2

q (q#u ,d) de-
fine the versions of the THDM known as I, II, and III, which
involve the following mechanisms, that are aimed either to
eliminate the otherwise unbearable FCNC problem or at least
to keep it under control.

!1" Discrete symmetries. A discrete symmetry can be in-
voked to allow a given fermion type (u or d quarks, for
instance" to couple to a single Higgs doublet, and in such
case FCNC’s are absent at the tree level. In particular, when
a single Higgs field gives masses to both types of quarks
!either Y 1

u#Y 1
d#0 or Y 2

u#Y 2
d#0), the resulting model is

referred as THDM-I. On the other hand, when each type of
quark couples to a different Higgs doublet !either Y 1

u#Y 2
d

#0 or Y 2
u#Y 1

d#0), the model is known as the THDM-II.
This THDM-II pattern is highly motivated because it arises
at the tree level in the minimal supersymmetry !SUSY" ex-
tension for the SM !MSSM" &5'.

!2" Radiative suppression. When each fermion type
couples to both Higgs doublets, FCNC’s could be kept under
control if there exists a hierarchy between Y 1

u ,d and Y 2
u ,d ,

namely, a given set of Yukawa matrices is present at the tree
level, but the other ones arise only as a radiative effect. This
occurs for instance in the MSSM, where the type-II THDM
structure is not protected by any symmetry and is trans-
formed into a type-III THDM !see below", through the loop
effects of sfermions and gauginos. That is, the Yukawa cou-
plings that are already present at the tree level in the MSSM
(Y 1

d ,Y 2
u) receive radiative corrections, while the terms

(Y 2
d ,Y 1

u) are induced at the one-loop level.
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I. INTRODUCTION

After many years of the success of the standard model
!SM", the Higgs mechanism is still the least tested sector,
and the problem of electroweak symmetry breaking !EWSB"
remains almost as open as ever. However, the analysis of
radiative corrections within the SM &1' points toward the
existence of a light Higgs boson, which could be detected in
the early stages of the CERN Large Hadron Collider !LHC"
&2'. On the other hand, the SM is often considered as an
effective theory, valid up to an energy scale of O(TeV), and
eventually it will be replaced by a more fundamental theory,
which will explain, among other things, the physics behind
EWSB and perhaps even the origin of flavor. Several ex-
amples of candidate theories, which range from supersym-
metry &3' to deconstruction &4', include a Higgs sector with
two scalar doublets, which has a rich structure and predicts
interesting phenomenology &5'. The general two-Higgs dou-
blet model !THDM" has a potential problem with flavor
changing neutral currents !FCNC’s" mediated by the Higgs
bosons, which arises when each quark type (u and d) is
allowed to couple to both Higgs doublets, and FCNC’s could
be induced at large rates that may jeopardize the model. The
possible solutions to this problem of the THDM involve an
assumption about the Yukawa structure of the model. To dis-
cuss them it is convenient to refer to the Yukawa Lagrangian,
which is written for the quark fields as follows:

LY#Y 1
uQ̄L(1uR!Y 2

uQ̄L(2uR!Y 1
dQ̄L(1dR!Y 2

dQ̄L(2dR ,
!1"

where (1,2#(#1,2
! ,#1,2

0 )T denote the Higgs doublets. The
specific choices for the Yukawa matrices Y 1,2

q (q#u ,d) de-
fine the versions of the THDM known as I, II, and III, which
involve the following mechanisms, that are aimed either to
eliminate the otherwise unbearable FCNC problem or at least
to keep it under control.

!1" Discrete symmetries. A discrete symmetry can be in-
voked to allow a given fermion type (u or d quarks, for
instance" to couple to a single Higgs doublet, and in such
case FCNC’s are absent at the tree level. In particular, when
a single Higgs field gives masses to both types of quarks
!either Y 1

u#Y 1
d#0 or Y 2

u#Y 2
d#0), the resulting model is

referred as THDM-I. On the other hand, when each type of
quark couples to a different Higgs doublet !either Y 1

u#Y 2
d

#0 or Y 2
u#Y 1

d#0), the model is known as the THDM-II.
This THDM-II pattern is highly motivated because it arises
at the tree level in the minimal supersymmetry !SUSY" ex-
tension for the SM !MSSM" &5'.

!2" Radiative suppression. When each fermion type
couples to both Higgs doublets, FCNC’s could be kept under
control if there exists a hierarchy between Y 1

u ,d and Y 2
u ,d ,

namely, a given set of Yukawa matrices is present at the tree
level, but the other ones arise only as a radiative effect. This
occurs for instance in the MSSM, where the type-II THDM
structure is not protected by any symmetry and is trans-
formed into a type-III THDM !see below", through the loop
effects of sfermions and gauginos. That is, the Yukawa cou-
plings that are already present at the tree level in the MSSM
(Y 1

d ,Y 2
u) receive radiative corrections, while the terms

(Y 2
d ,Y 1

u) are induced at the one-loop level.
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Yukawa sector of the 2HDM-III is similar to effective lagrangian of the 
MSSM  with a seesaw mechanism.

This lagrangian contains loop effects of sfermions and gauginos.

2HDM type III could be a generic  description of physics at higher 
scale (of order TeV o maybe higher)

(MSSM)
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Yukawa textures

The structure of quarks mass matrices (quark flavor mixing) is 
unknown.

A theory more fundamental than SM could determine:
6 quark masses, 3 flavor mixing angles, one CP-violating phase.

Phenomenologically, it has introduced a common approach: 
simple textures of quarks mass matrices (called Yukawa textures).

The Yukawa textures are consistents with the relations between quarks 
masses and flavor mixing parameters.

Yukawa textures could come of a theory more fundamental and it 
could be a flavor symmetry.

H. Fritzsch, Z. Z. Xing, Prog.Part. Nucl. Phys. 45 (2000)1.
H. Fritzsch, Z. Z. Xing, Phys. Lett. 555 (2003)63.
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2HDM-III +  Yukawa texture 
contain the following information:

 
It could come from a more fundamental theory  (susy models with 

seesaw mechanism).

+
Yukawa texture is the flavor symmetry of the model and do not 

require of the discrete flavor symmetry.

+

The Higgs potential must be expressed in the most general form. 

T. P. Cheng, M. Sher, Phys. Rev. D33,11 (1987)
J.L. Diaz-Cruz, R Noriega-Papaqui, A. Rosado. Phys. Rev. D69,095002 (2004)
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are to be bounded by current experimental constraints. Thus, in order to derive the interactions of the charged Higgs

boson, the Yukawa Lagrangian is written as follows:

−LY = Y u

1 Q̄LΦ̃1uR + Y u

2 Q̄LΦ̃2uR + Y d

1 Q̄LΦ1dR + Y d

2 Q̄LΦ2dR + Y �
1 L̄LΦ1lR + Y �

2 L̄LΦ2lR; (1)

where Φ1,2 = (φ+
1,2,φ

0
1,2)

T
refer to the two Higgs doublets, Φ̃1,2 = iσ2Φ∗

1,2, QL denotes the left-handed fermions

doublet, uR and dR are the right-handed fermions singlets and, finally, Y u,d

1,2 denote the (3 × 3) Yukawa matrices.

Similarly, one can see the corresponding left-handed fermion doublet LL, the right-handed fermion singlet lR and the

Yukawa matrices Y �
1,2 for leptons.

After SSB (Spontaneous Symmetry Breaking), one can derive the fermion mass matrices from eq. (1), namely

Mf =
1√
2
(v1Y

f

1 + v2Y
f

2 ), f = u, d, l, (2)

We will assume that both Yukawa matrices Y f

1 and Y f

2 have the four-texture form and Hermitic [22, 26]. Following

this convention, the fermions masses matrices have the same form, which are written as:

Mf =




0 Cf 0

C∗
f

B̃f Bf

0 B∗
f

Af



 . (3)

when B̃q → 0 one recovers the six-texture form. We also consider the hierarchy: | Aq |� | B̃q |, | Bq |, | Cq |, which is

supported by the observed fermion masses in the SM.

The mass matrix is diagonalized through the bi-unitary matrices VL,R, though each Yukawa matrices are not

diagonalized by this transformation. The diagonalization is performed in the following way

M̄f = V †
fL

MfVfR. (4)

The fact that Mf is hermitian, under the considerations given above, directly implies that VfL = VfR, and the

mass eigenstates for the fermions are given by

u = V †
u
u� d = V †

d
d� l = V †

l
l�. (5)

Then eq. (2) in this basis takes the form

M̄f =
1√
2
(v1Ỹ

f

1 + v2Ỹ
f

2 ) (6)

where Ỹ f

i
= V †

fL
Y f

i
VfR. In order to compare the new physics comes from Yukawa texture with some traditional 2HDM

(in particular with 2HDM-II), in previous works [22, 23, 28–30], we have implemented the following redefinition ((a)

like-2HDM-II):

Ỹ d

1 =

√
2

v cosβ
M̄d − tanβỸ d

2

Ỹ u

2 =

√
2

v sinβ
M̄u − cotβỸ u

1

Ỹ �
1 = Ỹ d

1 (d → �) (7)

This, redefinition is convenient because we can get the coupling Higgs-fermion-fermion as gffφ2HDM−III
= gffφ2HDM−II

+

∆gffφ, where gffφ2HDM−II
is the coupling in the 2HDM-II and ∆gffφ is the contribution of four-zero texture, which

comes some flavor theory. If ∆gffφ → 0 we can recover the 2HDM-II. However, this redefinition is not unique, there

are other possibilities since eq. 6, which can reproduce the 2HDM-I, 2HDM-X or 2HDM-Y when the contribution of

new physics ∆gffφ → 0. The other possible redefinitions are:

(b) like-2HDM-I

Ỹ d

2 =

√
2

v sinβ
M̄d − cotβỸ d

1

Ỹ u

2 =

√
2

v sinβ
M̄u − cotβỸ u

1

Ỹ �
2 = Ỹ d

2 (d → �) (8)
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are other possibilities since eq. 6, which can reproduce the 2HDM-I, 2HDM-X or 2HDM-Y when the contribution of

new physics ∆gffφ → 0. The other possible redefinitions are:

(b) like-2HDM-I

Ỹ d

2 =

√
2

v sinβ
M̄d − cotβỸ d

1

Ỹ u

2 =

√
2

v sinβ
M̄u − cotβỸ u

1

Ỹ �
2 = Ỹ d

2 (d → �) (8)
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are to be bounded by current experimental constraints. Thus, in order to derive the interactions of the charged Higgs

boson, the Yukawa Lagrangian is written as follows:

−LY = Y u

1 Q̄LΦ̃1uR + Y u

2 Q̄LΦ̃2uR + Y d

1 Q̄LΦ1dR + Y d

2 Q̄LΦ2dR + Y �
1 L̄LΦ1lR + Y �

2 L̄LΦ2lR; (1)

where Φ1,2 = (φ+
1,2,φ

0
1,2)

T
refer to the two Higgs doublets, Φ̃1,2 = iσ2Φ∗

1,2, QL denotes the left-handed fermions

doublet, uR and dR are the right-handed fermions singlets and, finally, Y u,d

1,2 denote the (3 × 3) Yukawa matrices.

Similarly, one can see the corresponding left-handed fermion doublet LL, the right-handed fermion singlet lR and the

Yukawa matrices Y �
1,2 for leptons.

After SSB (Spontaneous Symmetry Breaking), one can derive the fermion mass matrices from eq. (1), namely

Mf =
1√
2
(v1Y

f

1 + v2Y
f

2 ), f = u, d, l, (2)

We will assume that both Yukawa matrices Y f

1 and Y f

2 have the four-texture form and Hermitic [22, 26]. Following

this convention, the fermions masses matrices have the same form, which are written as:

Mf =




0 Cf 0

C∗
f

B̃f Bf

0 B∗
f

Af



 . (3)

when B̃q → 0 one recovers the six-texture form. We also consider the hierarchy: | Aq |� | B̃q |, | Bq |, | Cq |, which is

supported by the observed fermion masses in the SM.

The mass matrix is diagonalized through the bi-unitary matrices VL,R, though each Yukawa matrices are not

diagonalized by this transformation. The diagonalization is performed in the following way

M̄f = V †
fL

MfVfR. (4)

The fact that Mf is hermitian, under the considerations given above, directly implies that VfL = VfR, and the

mass eigenstates for the fermions are given by

u = V †
u
u� d = V †

d
d� l = V †

l
l�. (5)

Then eq. (2) in this basis takes the form

M̄f =
1√
2
(v1Ỹ

f

1 + v2Ỹ
f

2 ) (6)

where Ỹ f

i
= V †

fL
Y f

i
VfR. In order to compare the new physics comes from Yukawa texture with some traditional 2HDM

(in particular with 2HDM-II), in previous works [22, 23, 28–30], we have implemented the following redefinition ((a)

like-2HDM-II):

Ỹ d

1 =

√
2

v cosβ
M̄d − tanβỸ d

2

Ỹ u

2 =

√
2

v sinβ
M̄u − cotβỸ u

1

Ỹ �
1 = Ỹ d

1 (d → �) (7)

This, redefinition is convenient because we can get the coupling Higgs-fermion-fermion as gffφ2HDM−III
= gffφ2HDM−II

+

∆gffφ, where gffφ2HDM−II
is the coupling in the 2HDM-II and ∆gffφ is the contribution of four-zero texture, which

comes some flavor theory. If ∆gffφ → 0 we can recover the 2HDM-II. However, this redefinition is not unique, there

are other possibilities since eq. 6, which can reproduce the 2HDM-I, 2HDM-X or 2HDM-Y when the contribution of

new physics ∆gffφ → 0. The other possible redefinitions are:

(b) like-2HDM-I

Ỹ d

2 =

√
2

v sinβ
M̄d − cotβỸ d

1

Ỹ u

2 =

√
2

v sinβ
M̄u − cotβỸ u

1

Ỹ �
2 = Ỹ d

2 (d → �) (8)

4

(c) like-2HDM-X

Ỹ d
2 =

√
2

v sinβ
M̄d − cotβỸ d

1

Ỹ u
2 =

√
2

v sinβ
M̄u − cotβỸ u

1

Ỹ �
1 = Ỹ d

1 (d → �) (9)

(d) like-2HDM-Y

Ỹ d
1 =

√
2

v cosβ
M̄d − tanβỸ d

2

Ỹ u
2 =

√
2

v sinβ
M̄u − cotβỸ u

1

Ỹ �
2 = Ỹ d

2 (d → �) (10)

After spontaneous EWSB and including the diagonalizing matrices for quarks and Higgs bosons
1
, the interactions

of the charged Higgs boson H+
with quark pairs for any parametrization like-2HDM-(I,II,X,Y) have the following

form:

Lf̄ifjH
+

= − g

2
√
2MW

�
3�

l=1

ūi

�
(VCKM)il

�
X mdl δlj − f(X)

�√
2MW

g

��
Ỹ

d

n(X)

�

lj

�
(1 + γ5)

+

�
Y mui δil − f(Y )

�√
2MW

g

��
Ỹ

u

n(Y )

�†

il

�
(VCKM)lj(1− γ5)

�
dj H

+ (11)

+ν̄i

�
Z m�i δij − f(Z)

�√
2MW

g

��
Ỹ

�
n(Z)

�

ij

�
(1 + γ5)�jH

+ + h.c.

�
,

where VCKM denotes the mixing matrices of the quark sector, the parameters X, Y , Z are given in the Ref. [8–

10, 40, 44] and the functions f(x) and n(x) are given by:

f(x) =

�
1 + x2

n(x) =

�
2 if x = tanβ
1 if x = cotβ

(12)

Following the analysis in [22] one can derive a better approximation for the product Vq Y q
n V †

q , expressing the rotated

matrix Ỹ q
n , in the form

�
Ỹ q
n

�

ij
=

�
mq

im
q
j

v
[χ̃q

n]ij =

�
mq

im
q
j

v
[χq

n]ij eiϑ
q
ij , (13)

where χ’s are unknown dimensionless parameters of the model, they come from the election of a specific texture of the

Yukawa matrices. Is important to mention that the equation (13) is a consequence of the diagonalization

process of Yuwaka matrices, assuming the hierarchy among the fermion masses (see: Ref. [22]), namely,

the Cheng-Sher anzats is a particular case of this parametrization. Besides, in order to have an acceptable

model, the parameters χ’s could be O(1). Recently we calculate the χ2
-fit of Yukawa matrices with CKM

matrix, and we find that the parameters off-diagonal are O(1) ( e.g. χf
23 ≤ 10), therefore we can not

ignore all them, at least at level of the Lagrangian [42]. However, the flavour-changing processes at

low energy going to determine bounds for these parameters with high precision. In order to perform our

phenomenological study, we find it convenient to rewrite the Lagrangian given in Eq. (11) in terms of the coefficients

1 The details of both diagonalizations are presented in Ref. [22].

13	
  



Charged	
  Higgs	
  2012,	
  Uppsala,	
  Sweden.	
  

21

The first term, proportional to δij corresponds to the modification of the THDM-II over
the SM result, while the term proportional to Ỹ l

2 denotes the new contribution from
THDM-III. Thus, the fermion-Higgs couplings respect CP-invariance, despite the fact
that the Yukawa matrices include complex phases; this follows because of the Hermiticity
conditions impossed on both Y l

1 and Y l
2 .

The corrections to the lepton flavor conserving (LFC) and flavor-violating (LFV)
couplings, depend on the rotated matrix: Ỹ l

2 = OTPY l
2P

†O. We shall evaluate Ỹ l
2 , by

assuming that Y l
2 has a four-texture form, namely:

Y l
2 =







0 C2 0
C∗

2 B̃2 B2

0 B∗
2 A2





 , | A2 |! | B̃2 |, | B2 |, | C2 | . (5)

The matrix that diagonalizes the real matrix M̃l with the four-texture form, is given
by:

O =

















√

λ2λ3(A−λ1)
A(λ2−λ1)(λ3−λ1) η

√

λ1λ3(λ2−A)
A(λ2−λ1)(λ3−λ2)

√

λ1λ2(A−λ3)
A(λ3−λ1)(λ3−λ2)

−η
√

λ1(λ1−A)
(λ2−λ1)(λ3−λ1)

√

λ2(A−λ2)
(λ2−λ1)(λ3−λ2)

√

λ3(λ3−A)
(λ3−λ1)(λ3−λ2)

η
√

λ1(A−λ2)(A−λ3)
A(λ2−λ1)(λ3−λ1) −

√

λ2(A−λ1)(λ3−A)
A(λ2−λ1)(λ3−λ2)

√

λ3(A−λ1)(A−λ2)
A(λ3−λ1)(λ3−λ2)

















,

where me = m1 =| λ1 |, mµ = m2 =| λ2 |, mτ = m3 =| λ3 |, η = λ2/m2

Then the rotated form Ỹ l
2 has the general form,

Ỹ l
2 = OTPY l

2P
†O

=







Ỹ l
211 Ỹ l

212 Ỹ l
213

Ỹ l
221 Ỹ l

222 Ỹ l
223

Ỹ l
231 Ỹ l

232 Ỹ l
233





 . (6)

However, the full expressions for the resulting elements have a complicated form, as
it can be appreciated, for instance, by looking at the element (Ỹ l

2 )22, which is displayed
here:

(Ỹ2)
l
22 = η[C∗

2e
iΦC + C2e

−iΦC ]
(A − λ2)

m3 − λ2

√

m1m3

Am2
+ B̃2

A − λ2

m3 − λ2
(7)

+A2
A − λ2

m3 − λ2
− [B∗

2e
iΦB + B2e

−iΦB ]

√

(A − λ2)(m3 − A)

m3 − λ2
(8)

where we have taken the limits: |A|, mτ , mµ ! me. The free-parameters are: B̃2, B2, A2, A.
To derive a better suited approximation, we shall consider the elements of the Yukawa

matrix Y l
2 as having the same hierarchy as the full mass matrix, namely:
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matrix Y l
2 as having the same hierarchy as the full mass matrix, namely:
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(

Ỹ l
2

)

12
= (c2 + a2 − 2b2)

√
m1m2/v

(

Ỹ l
2

)

13
= (b2 − a2)

√
m1m3/v

(

Ỹ l
2

)

22
= (a2 − 2b2) m2/v

(

Ỹ l
2

)

23
= (b2 − a2)

√
m2m3/v

(

Ỹ l
2

)

33
= a2 m3/v (16)

which correspond to the Ansatz of Cheng-Sher (See Eq. (32) in Ref. [15]).

• On the other hand, when the phases ΦB and ΦC vanish, β = m2/m3 and η = 1,
Eq. (14) reduces to

(

Ỹ l
2

)

11
= (b̃2 − 2c2) m1/v

(

Ỹ l
2

)

12
= (c2 − b̃2)

√
m1m2/v

(

Ỹ l
2

)

13
= (a2 − b2)

√
m1m2/v

(

Ỹ l
2

)

22
= b̃2 m2/v

(

Ỹ l
2

)

23
= (b2 − a2) m2/v

(

Ỹ l
2

)

33
= a2 m3/v (17)

in this case one reproduces the results given in Ref.[20] (See Eq. (24)).

While the diagonal elements χ̃ii are real, we notice (Eqs. 15) the appearance of
the phases in the off-diagonal elements, which are essentially unconstrained by present
low-energy phenomena. As we will see next, these phases modify the pattern of flavor
violation in the Higgs sector. For instance, while the Cheng-Sher Ansatz predicts that
the LFV couplings (Ỹ l

2 )13 and (Ỹ l
2 )23 vanish when a2 = b2, in our case this is no longer

valid for cos ΦB #= 1. Furthermore the LFV couplings satisfy several relations, such as:
|χ̃23| = |χ̃13|, which simplifies the parameter freedom.

Finally, in order to perform our phenomenological study we find convenient to rewrite
the lagrangian given in Eq. (4) in terms of the χ̃ij ’s as follows:

Ll
Y =

g

2
li

[

(

mi

mW

)

cos α

cos β
δij +

sin(α − β)√
2 cos β

(√
mimj

mW

)

χ̃ij

]

ljH
0

+
g

2
li

[

−
(

mi

mW

)

sin α

cos β
δij +

cos(α − β)√
2 cos β

(√
mimj

mW

)

χ̃ij

]

ljh
0

+
ig

2
li

[

−
(

mi

mW

)

tan β δij +
1√

2 cos β

(√
mimj

mW

)

χ̃ij

]

γ5ljA
0. (18)

7
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The first term, proportional to ! i j , corresponds to the modi-
fication of the THDM-II over the SM result, while the term
proportional to Ỹ 2

l denotes the new contribution from the
THDM-III. Thus, the fermion–Higgs-boson couplings re-
spect CP invariance, despite the fact that the Yukawa matri-
ces include complex phases; this follows because of the Her-
miticity conditions imposed on both Y 1

l and Y 2
l .

The corrections to the lepton flavor conserving "LFC# and
flavor violating couplings depend on the rotated matrix

Ỹ 2
l !OTPY 2

l P†O . We shall evaluate Ỹ 2
l by assuming that Y 2

l

has a four-texture form, namely,

Y 2
l !! 0 C2 0

C2* B̃2 B2
0 B2* A2

" , #A2#"#B̃2#,#B2#,#C2#. "5#

The matrix that diagonalizes the real matrix M̃ l with the
four-texture form is given by

O!! ! $2$3"A#$1#

A"$2#$1#"$3#$1#
%! $1$3"$2#A #

A"$2#$1#"$3#$2#
! $1$2"A#$3#

A"$3#$1#"$3#$2#

#%! $1"$1#A #

"$2#$1#"$3#$1#
! $2"A#$2#

"$2#$1#"$3#$2#
! $3"$3#A #

"$3#$1#"$3#$2#

%! $1"A#$2#"A#$3#

A"$2#$1#"$3#$1#
#! $2"A#$1#"$3#A #

A"$2#$1#"$3#$2#
! $3"A#$1#"A#$2#

A"$3#$1#"$3#$2#

" ,
where me!m1!#$1#,m&!m2!#$2#,m'!m3!#$3#,%
!$2 /m2.
Then the rotated form Ỹ 2

l has the general form

Ỹ 2
l !OTPY 2

l P†O

!! Ỹ 211
l Ỹ 212

l Ỹ 213
l

Ỹ 221
l Ỹ 222

l Ỹ 223
l

Ỹ 231
l Ỹ 232

l Ỹ 233
l
" . "6#

However, the full expressions for the resulting elements
have a complicated form, as can be appreciated, for instance,
by looking at the element (Ỹ 2

l )22 , which is displayed here:

" Ỹ 2#22
l !%(C2*ei)C$C2e#i)C*

"A#$2#

m3#$2
!m1m3

Am2

$B̃2
A#$2
m3#$2

$A2
A#$2
m3#$2

#(B2*ei)B$B2e#i)B*!"A#$2#"m3#A #

m3#$2
,

"7#

where we have taken the limits #A#,m' ,m&"me . The free
parameters are B 2̃,B2 ,A2 ,A .
To derive a better suited approximation, we shall consider

the elements of the Yukawa matrix Y 2
l as having the same

hierarchy as the full mass matrix, namely,

C2!c2!m1m2m3

A , "8#

B2!b2!"A#$2#"m3#A #, "9#

B̃2! b̃2"m3#A$$2#, "10#

A2!a2A . "11#

Then, in order to keep the same hierarchy for the elements
of the mass matrix, we find that A must fall within the inter-
val (m3#m2)+A+m3. Thus, we propose the following re-
lation for A:

A!m3"1#,z #, "12#

where z!m2 /m3%1 and 0+,+1.
Then we introduce the matrix -̃ as follows:

" Ỹ 2
l # i j!

!mim j

v
-̃ i j

!
!mim j

v
- i je. i j, "13#

which differs from the usual Cheng-Sher ansatz not only
because of the appearance of the complex phases, but also in
the form of the real parts - i j!#-̃ i j#.
Expanding in powers of z, one finds that the elements of

the matrix -̃ have the following general expressions:
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l Ỹ 223
l
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hierarchy as the full mass matrix, namely,

C2!c2!m1m2m3

A , "8#

B2!b2!"A#$2#"m3#A #, "9#

B̃2! b̃2"m3#A$$2#, "10#

A2!a2A . "11#

Then, in order to keep the same hierarchy for the elements
of the mass matrix, we find that A must fall within the inter-
val (m3#m2)+A+m3. Thus, we propose the following re-
lation for A:

A!m3"1#,z #, "12#

where z!m2 /m3%1 and 0+,+1.
Then we introduce the matrix -̃ as follows:

" Ỹ 2
l # i j!

!mim j

v
-̃ i j

!
!mim j

v
- i je. i j, "13#

which differs from the usual Cheng-Sher ansatz not only
because of the appearance of the complex phases, but also in
the form of the real parts - i j!#-̃ i j#.
Expanding in powers of z, one finds that the elements of

the matrix -̃ have the following general expressions:
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!̃11!" b̃2"#c2*ei$C#c2e"i$C%&'

#"a2# b̃2"#b2*ei$B#b2e"i$B%&( ,

!̃12!#c2e"i$C" b̃2%

"'"a2# b̃2"#b2*ei$B#b2e"i$B%&( ,

!̃13!#a2"b2e"i$B%'!( ,

!̃22! b̃2'#"a2# b̃2"#b2*ei$B#b2e"i$B%&( ,

!̃23!#b2e"i$B"a2%!( ,

!̃33!a2 . #14%

It is also relevant to point out the following.
#1% When the phases $B and $C vanish, (!1, and one

takes the six-texture limit (B̃2→0, i.e. b̃→0⇒'!"1), Eq.
#13% reduces to

# Ỹ 2
l %11!#2c2#a2"2b2%m1 /v ,

# Ỹ 2
l %12!#c2#a2"2b2%!m1m2/v ,

# Ỹ 2
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# Ỹ 2
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# Ỹ 2
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# Ỹ 2
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which correspond to the ansatz of Cheng-Sher. "see Eq. #32%
in Ref. "15&&.
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In this case one reproduces the results given in Ref. "20&.
"See Eq. #24% there.&
While the diagonal elements !̃ ii are real, we notice "Eqs.

#14%& the appearance of phases in the off-diagonal elements,
which are essentially unconstrained by present low energy
phenomena. As we will see next, these phases modify the
pattern of flavor violation in the Higgs sector. For instance,

while the Cheng-Sher ansatz predicts that the LFV couplings
(Ỹ 2

l )13 and (Ỹ 2
l )23 vanish when a2!b2, in our case this is no

longer valid for cos$B)1. Furthermore, the LFV couplings
satisfy several relations, such as !!̃23!!!!̃13!, which simpli-
fies the parameter freedom.
Finally, in order to perform our phenomenological study

we find it convenient to rewrite the Lagrangian given in Eq.
#4% in terms of the !̃ i j’s as follows:

L Y
l !

g
2 l̄ i" # mi

mW
$ cos*

cos(
+ i j#

sin#*"(%

!2 cos(
#!mim j

mW
$ !̃ i j% l jH0

#
g
2 l̄ i""# mi

mW
$ sin*

cos(
+ i j#

cos#*"(%

!2 cos(
#!mim j

mW
$ !̃ i j%

$l jh0#
ig
2 l̄ i""# mi

mW
$ tan(+ i j

#
1

!2 cos(
#!mim j

mW
$ !̃ i j%,5l jA0, #17%

where, unlike in the Cheng-Sher ansatz, !̃ i j (i) j) are com-
plex.

III. BOUNDS ON THE LFV HIGGS PARAMETERS

Constraints on the LFV Higgs boson interaction will be
obtained by studying LFV transitions, which include the
three-body modes (l i→l jlk l̄ k), radiative decays (l i→l j
#,), --e conversion in nuclei, and the #LFC% muon anoma-
lous magnetic moment.

A. LFV three-body decays

To evaluate the LFV leptonic couplings, we calculate the
decays l i→l jlk l̄ k , including the contribution from the three
Higgs bosons (h0, H0, and A0). We obtain the following
expression for the branching ratio:
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!
5+ jk#2
3

. i

211/3

mjmk
2mi

6

v4

$& cos2#*"(%sin2*
mh0
4 #

sin2#*"(%cos2*
mH0
4

"2
cos#*"(%sin#*"(%cos* sin*

mh0
2 mH0

2 #
sin2(
mA0
4 '

$
! i j
2

2 cos4(
, #18%

where . i denotes the lifetime of the lepton l i and we have
assumed !kk%1; this result agrees with Ref. "20&.
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as the experimental results show. Although the phenome-
nology of Yukawa couplings constrains the hierarchy of the
mass matrix entries, it is not enough to determine the
strength of the interaction with scalars. Another assump-
tion on the Yukawa matrix is related to the additional Higgs
doublet. In versions I and II it is introduced a discrete
symmetry on the Higgs doublets, fulfilled by the scalar
potential, that leads to the vanishing of most of the free
parameters. However, version III, having a richer phe-
nomenology, requires a slightly more general scheme.

There is a close relation between the flavor space and the
mass matrix, which in general can be written as

Mf ¼
1ffiffiffi
2

p ðv1Y
f
1 þ v2Y

f
2 Þ: (2)

Inspired by the fact that in the Higgs basis the information
of the mass matrix is contained in the first Yukawa matrix
and the SM couplings are proportional to the fermion
masses, the interactions with scalars in a general 2HDM
can be modeled by imposing a specific form on the second
Yukawa matrix as a mass matrix transformed in the flavor
space. In this paper it is utilized a particular case of this
model [13] that can describe different versions of the
2HDM by using properties of the flavor space through a
simple principle. We introduce the concept partially
aligned (PA) Yukawa matrix according to two criteria:
(a) a new transformation for the first Yukawa matrix in
the flavor space SUFð3Þ, and (b) the control of FCNC
induced by this transformation, using as a criterion the
Cheng-Sher ansatz [10]. By following these ideas, the
concept of PA will be defined by a new transformation
which enables us to write the matrix of couplings as a
biunitary transformed mass matrix, namely

Yf
2 ¼ 1

v
Af
LMfA

f
R; (3)

where Af
L and Af

R with f ¼ u, d, ‘ are diagonal SUFð3Þ
matrices that concentrate the dynamical information about
extended scalar interactions andMf contains the properties
of the hierarchy of the quark masses and the mixing of
the CKM matrix, whose form is determined by a more
fundamental theory. As usual, we have combined the vac-
uum expectation values of the doublet Higgs fields through

the relation v2 ¼ v2
1 þ v2

2. In the PA-2HDM the aligned

model [14,15] can be cast with Af
L ¼ Af

R % !0, where !0 is
the matrix proportional to a unit matrix in SUFð3Þ. Details
about these formulations are given elsewhere. As men-
tioned above, the several versions of the 2HDM can be
generated by choosing suitable matrices (see Table I).
There is no physical restriction on the structure of the
mass matrix beyond the fact that the quark masses of
different families differ by several orders of magnitude.
On the other hand, the partial aligned two Higgs doublet
model (PA-2HDM) will induce Higgs boson FCNC
through the following term:

~Y f
2 ¼ 1

v
~Af
L
!Mf

~Af
R; (4)

where ~Af
L;R ¼ Ufy

L;RA
f
L;RU

f
L;R, !Mf ¼ Diag½mf1; mf2; mf3',

and Uf
L;R are the matrices that diagonalize the mass matrix

Mf. So, the contribution to fermion-fermion-Higgs bosons
couplings is given by

ð ~Yf
2Þij ¼

1

v
ðmf1ð ~Af

LÞi1ð ~Af
RÞ1j þmf2ð ~Af

LÞi2ð ~Af
RÞ2j

þmf3ð ~Af
LÞi3ð ~Af

RÞ3jÞ: (5)

In order to control the FCNC induced by the model, we
employ the Cheng-Sher ansatz [10] in the following way:

ð ~YCS;f
2 Þij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mfimfj

p

v
~"f
ij: (6)

Then, from Eq. (4) and (6) the FCNC will be controlled by

jmf1ð ~Af
LÞi1ð ~Af

RÞ1j þmf2ð ~Af
LÞi2ð ~Af

RÞ2j þmf3ð ~Af
LÞi3ð ~Af

RÞ3jj
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mfimfj
p j~"f

ijj: (7)

The advantage of this criterion is that we can use previous
studies of the experimental constraints imposed on the free
parameters of Yukawa texture [3,16–19]. Moreover, by
definition, the eigenvalues of the mass matrix are the
masses of fermions, i.e., they must be real and non-
negative. A Hermitian matrix guarantees that the masses
are real, however, the non-negativity condition for the
eigenvalues is not fulfilled by any Hermitian matrix.
Actually, the four-zero texture matrix has at least one

TABLE I. Matrices that reproduce several versions of the Yukawa interactions for the 2HDM
in terms of SUFð3Þ generators. The C0s parameters are complex coefficients and they are

proportional to the parameters ~"f
ij defined in Eq. (6).

Au
L Au

R Ad
L Ad

R

I
ffiffiffiffiffiffiffiffi
3mW

v

q
!0

ffiffiffiffiffiffiffiffi
3mW

v

q
!0

ffiffiffiffiffiffiffiffi
3mW

v

q
!0

ffiffiffiffiffiffiffiffi
3mW

v

q
!0

II
ffiffiffiffiffiffiffiffi
3mW

v

q
!0

ffiffiffiffiffiffiffiffi
3mW

v

q
!0 03)3 03)3

III-IV
P

a¼0;3;8C
u
a!a ðPa¼0;3;8

~Cu
a!aÞy

P
a¼0;3;8C

d
a!a ðPa¼0;3;8

~Cd
a!aÞy

A2HDM Cu
0!0

~Cu*
0 !0 Cd

0!0
~Cd*
0 !0
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about these formulations are given elsewhere. As men-
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There is no physical restriction on the structure of the
mass matrix beyond the fact that the quark masses of
different families differ by several orders of magnitude.
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The advantage of this criterion is that we can use previous
studies of the experimental constraints imposed on the free
parameters of Yukawa texture [3,16–19]. Moreover, by
definition, the eigenvalues of the mass matrix are the
masses of fermions, i.e., they must be real and non-
negative. A Hermitian matrix guarantees that the masses
are real, however, the non-negativity condition for the
eigenvalues is not fulfilled by any Hermitian matrix.
Actually, the four-zero texture matrix has at least one
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nology of Yukawa couplings constrains the hierarchy of the
mass matrix entries, it is not enough to determine the
strength of the interaction with scalars. Another assump-
tion on the Yukawa matrix is related to the additional Higgs
doublet. In versions I and II it is introduced a discrete
symmetry on the Higgs doublets, fulfilled by the scalar
potential, that leads to the vanishing of most of the free
parameters. However, version III, having a richer phe-
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the matrix proportional to a unit matrix in SUFð3Þ. Details
about these formulations are given elsewhere. As men-
tioned above, the several versions of the 2HDM can be
generated by choosing suitable matrices (see Table I).
There is no physical restriction on the structure of the
mass matrix beyond the fact that the quark masses of
different families differ by several orders of magnitude.
On the other hand, the partial aligned two Higgs doublet
model (PA-2HDM) will induce Higgs boson FCNC
through the following term:

~Y f
2 ¼ 1

v
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L
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R; (4)

where ~Af
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L;R are the matrices that diagonalize the mass matrix

Mf. So, the contribution to fermion-fermion-Higgs bosons
couplings is given by
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In order to control the FCNC induced by the model, we
employ the Cheng-Sher ansatz [10] in the following way:
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The advantage of this criterion is that we can use previous
studies of the experimental constraints imposed on the free
parameters of Yukawa texture [3,16–19]. Moreover, by
definition, the eigenvalues of the mass matrix are the
masses of fermions, i.e., they must be real and non-
negative. A Hermitian matrix guarantees that the masses
are real, however, the non-negativity condition for the
eigenvalues is not fulfilled by any Hermitian matrix.
Actually, the four-zero texture matrix has at least one

TABLE I. Matrices that reproduce several versions of the Yukawa interactions for the 2HDM
in terms of SUFð3Þ generators. The C0s parameters are complex coefficients and they are

proportional to the parameters ~"f
ij defined in Eq. (6).
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2HDM-III X Y Z

like-2HDM-I − cotβ cotβ − cotβ
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like-2HDM-X − cotβ cotβ tanβ
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TABLE I: Parameters X,Y and Z defined in the Yukawa interactions of eq. 11 for four versions of the 2HDM-III with a four
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3

are to be bounded by current experimental constraints. Thus, in order to derive the interactions of the charged Higgs

boson, the Yukawa Lagrangian is written as follows:

−LY = Y u

1 Q̄LΦ̃1uR + Y u

2 Q̄LΦ̃2uR + Y d

1 Q̄LΦ1dR + Y d

2 Q̄LΦ2dR + Y �
1 L̄LΦ1lR + Y �

2 L̄LΦ2lR; (1)

where Φ1,2 = (φ+
1,2,φ

0
1,2)

T
refer to the two Higgs doublets, Φ̃1,2 = iσ2Φ∗

1,2, QL denotes the left-handed fermions

doublet, uR and dR are the right-handed fermions singlets and, finally, Y u,d

1,2 denote the (3 × 3) Yukawa matrices.

Similarly, one can see the corresponding left-handed fermion doublet LL, the right-handed fermion singlet lR and the

Yukawa matrices Y �
1,2 for leptons.

After SSB (Spontaneous Symmetry Breaking), one can derive the fermion mass matrices from eq. (1), namely

Mf =
1√
2
(v1Y

f

1 + v2Y
f

2 ), f = u, d, l, (2)

We will assume that both Yukawa matrices Y f

1 and Y f

2 have the four-texture form and Hermitic [22, 26]. Following

this convention, the fermions masses matrices have the same form, which are written as:

Mf =




0 Cf 0

C∗
f

B̃f Bf

0 B∗
f

Af



 . (3)

when B̃q → 0 one recovers the six-texture form. We also consider the hierarchy: | Aq |� | B̃q |, | Bq |, | Cq |, which is

supported by the observed fermion masses in the SM.
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u
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d
d� l = V †

l
l�. (5)
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f
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f

2 ) (6)
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Y f

i
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Γ(H± → uidj) =
3GFmH±(m2

dj
|Xij |2 +m2

ui
|Yij |2)

4π
√
2

(27)

On can see that is very interesting the case Y >>, X,Z (this imply that Yij >>, Xij ,Zij : see eqs. 17-18 ), because
the channel decay H+ → cb̄ is dominant. In order to show this situation, we calculate the dominants terms mcY23,
mcY22 of width H+ → cb̄, cs̄ respectivily, which are given by:

mcYcb = mcY23 = Vcbmc

�
Y − f(Y )√

2
χu

22

�
− Vtb

f(Y )√
2

√
mtmcχ

u

23

= Vcbmcλ
u

22 + Vtb

√
mtmcλ

u

23 (28)

mcYcs = mcY22 = Vcsmc

�
Y − f(Y )√

2
χu

22

�
− Vts

f(Y )√
2

√
mtmcχ

u

23

= Vcsmcλ
u

22 + Vts

√
mtmcλ

u

23 (29)

As Y is large and f(Y ) =
√
1 + Y 2 ∼ Y , then the term

�
Y − f(Y )√

2
χu

22

�
could be absent or small, when χij = O(1).

On the other hand, the last term is very huge because to
√
mtmc and this is the dominant term (also for λij = O(1)).

So, we can approach the ratio of two dominant decays, namely, BR(H± → cb) and BR(H± → cs), which is given as
follows:

BR(H± → cb)

BR(H± → cs)
= Rsb ∼

|Vtb|2

|Vts|2
(30)

In Reference [24], the authors only take the diagonal terms λii and the non-diagonal terms are ab-

sent.Therefore, the scenarios where channel decay H± → cb could be dominant do not appear under

this assumption. However, we can see that the non-diagonal term χu

23 (or λu

23) has a factor large given

by
√
mcmt, which cannot be omitted and is an important result of new physics beyond 2HDM. Simi-

larly, we have been studied interesting channels decay and processes production at tree level and one

loop-level [22, 23, 28–30].
Other case is when X >>, Y ,Z, we get the dominants terms mbX23, msX22:

mbXcb = mbX23 = Vcbmb

�
X − f(X)√

2
χd

33

�
− Vcs

f(X)√
2

√
mbmsχ

u

23

= Vcbmbλ
d

33 + Vcs

√
msmbλ

d

23 (31)

msXcs = msX22 = Vcsms

�
X − f(X)√

2
χd

22

�
− Vts

f(X)√
2

√
mbmsχ

u

23

= Vcsmsλ
u

22 + Vcb

√
msmbλ

d

32 (32)

In this scenario there are two possibilities. If χ = O(1) and positive then

�
X − f(X)√

2
χd

33

�
is small and Rsb ∼ |Vcs|2

|Vcb|2 ,

and the BR(H± → cb) becomes large. Other situation is when, χ = O(1) and negative, then Rsb ∼ m
2
b |Vcb|2

m2
s|Vcb|2 , which

was studied recently in [40].

A. Tree level decays

1. µ− e universality in τ decays

The dacays τ → µν̄µντ and τ → eν̄eντ give an important constraint in charged Higgs physics with leptons [46], the
µ− e universality, this quantity can be expressed as [47, 48]:

�
gµ
ge

�2

τ

=
BR(τ → µν̄µντ )

BR(τ → eν̄eντ )

f(m2
e
/m2

τ )

f(m2
µ
/m2

τ )
= 1.0036± 0.0020

where f(x) = 1− 8x2 + 8x3 − x4 − 12x2 logx. Following [8] in our case µ− e universality is:

BR(τ → µν̄µντ )

BR(τ → eν̄eντ )

f(m2
e
/m2

τ )

f(m2
µ
/m2

τ

� 1 +
R2

4
− 0.25R.
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mcmt, which cannot be omitted and is an important result of new physics beyond 2HDM. Simi-
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s|Vcb|2 , which
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On can see that is very interesting the case Y >>, X,Z (this imply that Yij >>, Xij ,Zij : see eqs. 17-18 ), because
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this assumption. However, we can see that the non-diagonal term χu

23 (or λu

23) has a factor large given

by
√
mcmt, which cannot be omitted and is an important result of new physics beyond 2HDM. Simi-

larly, we have been studied interesting channels decay and processes production at tree level and one

loop-level [22, 23, 28–30].
Other case is when X >>, Y ,Z, we get the dominants terms mbX23, msX22:
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In this scenario there are two possibilities. If χ = O(1) and positive then

�
X − f(X)√

2
χd
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�
is small and Rsb ∼ |Vcs|2

|Vcb|2 ,

and the BR(H± → cb) becomes large. Other situation is when, χ = O(1) and negative, then Rsb ∼ m
2
b |Vcb|2

m2
s|Vcb|2 , which

was studied recently in [40].

A. Tree level decays

1. µ− e universality in τ decays

The dacays τ → µν̄µντ and τ → eν̄eντ give an important constraint in charged Higgs physics with leptons [46], the
µ− e universality, this quantity can be expressed as [47, 48]:
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= 1.0036± 0.0020

where f(x) = 1− 8x2 + 8x3 − x4 − 12x2 logx. Following [8] in our case µ− e universality is:
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Following the analysis of Ref [49], we can obtain the following constraint:

|Z22Z33|
m2

H±
≤ 0.16 GeV −1 (33)

We show in the figure 1, the constraints for χ�
22 and χ�

33 and 0.5 ≤ Z ≤ 80. We can see that χ�
22 and χ�

33 could be
simultaneously 1 and -1, and the region more favorable is when χ�

22 = χ�
33 = 1.5 .

B. Effective Lagrangian for 4-Fermi interactions

Once we obtain the charged Higgs and fermion couplings, it is straightforward to write down the amplitudes for

B → Dτν (B− → D
0
τ−ν or B

0 → D+τ−ν) and B → τν processes. First, the effective Lagrangian for b → cτν
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Γ(H± → uidj) =
3GFmH±(m2
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ui
|Yij |2)

4π
√
2

(27)

On can see that is very interesting the case Y >>, X,Z (this imply that Yij >>, Xij ,Zij : see eqs. 17-18 ), because
the channel decay H+ → cb̄ is dominant. In order to show this situation, we calculate the dominants terms mcY23,
mcY22 of width H+ → cb̄, cs̄ respectivily, which are given by:
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As Y is large and f(Y ) =
√
1 + Y 2 ∼ Y , then the term
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2
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22

�
could be absent or small, when χij = O(1).

On the other hand, the last term is very huge because to
√
mtmc and this is the dominant term (also for λij = O(1)).

So, we can approach the ratio of two dominant decays, namely, BR(H± → cb) and BR(H± → cs), which is given as
follows:
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= Rsb ∼

|Vtb|2

|Vts|2
(30)

In Reference [24], the authors only take the diagonal terms λii and the non-diagonal terms are ab-

sent.Therefore, the scenarios where channel decay H± → cb could be dominant do not appear under

this assumption. However, we can see that the non-diagonal term χu

23 (or λu

23) has a factor large given

by
√
mcmt, which cannot be omitted and is an important result of new physics beyond 2HDM. Simi-

larly, we have been studied interesting channels decay and processes production at tree level and one

loop-level [22, 23, 28–30].
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is small and Rsb ∼ |Vcs|2
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and the BR(H± → cb) becomes large. Other situation is when, χ = O(1) and negative, then Rsb ∼ m
2
b |Vcb|2

m2
s|Vcb|2 , which

was studied recently in [40].
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Following the analysis of Ref [49], we can obtain the following constraint:

|Z22Z33|
m2

H±
≤ 0.16 GeV −1 (33)

We show in the figure 1, the constraints for χ�
22 and χ�

33 and 0.5 ≤ Z ≤ 80. We can see that χ�
22 and χ�

33 could be
simultaneously 1 and -1, and the region more favorable is when χ�

22 = χ�
33 = 1.5 .

B. Effective Lagrangian for 4-Fermi interactions

Once we obtain the charged Higgs and fermion couplings, it is straightforward to write down the amplitudes for

B → Dτν (B− → D
0
τ−ν or B

0 → D+τ−ν) and B → τν processes. First, the effective Lagrangian for b → cτν
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0
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operators is given by

Leff = −GF√
2
Vcbcγµ(1− γ5)bτγ

µ(1− γ5)ντ

+GScbτ(1− γ5)ντ +GPcγ5bτ(1− γ5)ντ + h.c., (34)

where GS and GP are scalar and pseudo-scalar effective couplings. These couplings are given from Eqs.(15) and (19),

GS ≡
S�
3,3

2v2M2
H±

S2,3 (35)

GP ≡
S�
3,3

2v2M2
H±

P2,3. (36)

Following the analysis of Ref. [? ] of RB→Dτν = BR(B → Dτν)/BR(B → Deν), one can write this term as a second
order polynomial in the charged Higgs coupling, as

RB→Dτν = a0 + a1(m
2
B
−m2

D
)GS + a2(m

2
B
−m2

D
)2G2

S (37)

One can see that 2HDM type III with a Yukawa Texture can avoid the constraints of the factor RB→Dτν . In particular
for the case tanβ ∼ 0.3 and m±

H
∼ 120 GeV.

B(M → �ν)

B(M → �ν)SM

= |1−∆ij |2

∆ij =

�
mM

mH±

�2

Z

�
Yijmui

+Xijmdj

mui
+mdj

�
(38)

We consider D → µν, B → τν, Ds → µν, τν

On the other hand, the condition
Γ
H+

m
H+

< 1
2 in the frame of the 2HDM-II implies

Γ
H+

m
H+

≈ 3GFm
2
t

4
√
2π tan β2 which leads

to 0.3 <∼ tanβ <∼ 130. However, in the 2HDM-III we have that
Γ
H+

m
H+

≈ 3GFm
2
t

4
√
2π tan β2

�
1

1− χ̃u
33√

2 cos β

�2

, we have checked

numerically that this leads to 0.08 < tanβ < 200 when |χ̃u

33| ≈ 1 and 0.3 < tanβ < 130 as long as |χ̃u

33| → 0
recovering the result for the case of the 2HDM-II [2, 50].
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µ(1− γ5)ντ

+GScbτ(1− γ5)ντ +GPcγ5bτ(1− γ5)ντ + h.c., (34)
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GS ≡
S�
3,3

2v2M2
H±

S2,3 (35)

GP ≡
S�
3,3

2v2M2
H±

P2,3. (36)
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B
−m2

D
)2G2

S (37)

One can see that 2HDM type III with a Yukawa Texture can avoid the constraints of the factor RB→Dτν . In particular
for the case tanβ ∼ 0.3 and m±
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+Xijmdj

mui
+mdj

�
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We consider D → µν, B → τν, Ds → µν, τν
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Conclusions	
  
•  2HDM-­‐III	
  with	
  a	
  four-­‐zero	
  texture	
  in	
  the	
  Yukawa	
  matrices	
  

could	
  contain	
  the	
  versions	
  of	
  2HDM.	
  

•  The	
  terms	
  off-­‐diagonal	
  matrices	
  Xij	
  could	
  be	
  	
  O(1)	
  and	
  cannot	
  
omiped,	
  including	
  some	
  important	
  constraints	
  of	
  processes	
  to	
  
low	
  energy.	
  

•  H+	
  à	
  cb	
  could	
  be	
  relevant.	
  

•  H+	
  à	
  W+	
  gamma	
  could	
  enhance.	
  

•  Produc>on	
  H+	
  could	
  be	
  quite	
  different	
  to	
  the	
  results	
  of	
  the	
  
others	
  versions	
  of	
  2HDM.	
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