

cHarged 2012: Fourth International Workshop on Prospects for Charged Higgs Discovery at Colliders - Uppsala, October 8-11, 2012

On behalf of the CMS collaboration

Data taking

- Lumi: 16/fb delivered, 15/fb recorded
- Detector status and operational efficiency are very good
 - Recent fills 96-97% efficiency
- Magnet fast discharge
 - 0.5/fb recorded with B=0 T
 - Data used for calibration/alignment

CMS integrated luminosity

CMS Total Integrated Luminosity, p-p

- Peak luminosity: 7.5e33
- Pile-up: 35 events
- Efficiency: >93%
- More than doubled 7 TeV dataset

Pile-up

- About ~30 pp collisions per bunch crossing
- High multiplicity
 - ~1-2 thousand low energy charged particles/crossing
 - ~1-2 thousand low energy photons/crossing
- Challenge to reconstruct hard collisions
 - Jets and MET reconstruction
 - Lepton isolation
- Assignment of particles to primary vertex
 - Particle flow reconstruction
 - Neutral energy: event-by-event energy subtraction

Particle-flow reconstruction

- Optimal combination of information from all sub-detectors
- Returns a list of reconstructed "particles"
- Identifies charged particles from pile-up
- Minimizes impact of PU on jet reconstruction, lepton & photon isolation

Michele Gallinaro - "Highlights from recent CMS results" - cHarged 2012, Uppsala - Oct. 8, 2012 signal efficiency

Vertex and b-tagging

- Vertex resolution better than vertex separation
 - Resolution ~10mm for large # of tracks
 - −No surprise to get efficiency ~100%
- Several algorithms for b-tagging purposes

ECAL performance

- Automated calibration procedure
 - New laser calibration: automated 48-hr loop
 - Crystal-by-crystal transparency corrections
- Excellent stability with prompt calibration

Progress in ECAL calibration

Resolution is approaching the nominal value

Missing E_T and resolution

MET resolution for different N_{PV} is fitted with:

$$\sigma_{\rm tot} = \sqrt{c^2 + \frac{N_{\rm PV}}{0.7} \cdot \sigma_{\rm PU}}$$

- the fit yields:
 - c : average resolution without PU
 - σ_{PU}: degradation in resolution caused by PU
- improved resolution in 2012 for fixed N_{PV}
 - improved ECAL/HCAL energy reconstruction
 - ⇒ reduces out-of-time pileup effects
 - MET pile-up corrections applied
- pile-up introduces an additional smearing of
 - ~ 3 GeV on MET resolution σ_{PU} (in quadrature)

Trigger

- Trigger system is a very simple concept: two levels
 - L1 is hardwired to a flexible/programmable High Level Trigger
- Challenge is to keep "reasonable" rate cross section with varying pile-up conditions, without "loosing" physics
- Full use of the flexible HLT system

Some of the offline features (PF and PU corrections) are

implemented online

Trigger performance

Muon rate cut 50% for ¹ a few % efficiency loss_{0.8}

Sharper turn-on curve in fwd region (new corrections)

Jets: added a 5 GeV jet seed threshold (no loss in physics)

The standard model

B and forward physics

Observation of $B_c^+ \to J/\psi \ \pi^+\pi^+\pi^-$

Y(1s,2s,3s): no evidence for large polarization

Michele Gallinaro - "Highlights from recent CMS results" - cHarged 2012

Heavy Ion physics

Observation of Y suppression

Many different probes (W, Z, g, b, etc)

QCD and standard model

Inclusive jet and dijets:

- NLO describes data over 9 orders of
- Constrains gluon PDF up to x=0.6.

Differential DY cross section:

- 2.5M Z→μμ pairs test NNLO cross sections and PDFs

Electroweak physics

Top quark pair production

Single top production

$$\sigma_{Wt} = 16^{+5}_{-4} \text{ (stat} \oplus \text{syst) pb}$$

$$\sigma_{t-{
m ch.}} = 80.1 \pm 5.7 ({
m stat.}) \, \pm 11.0 ({
m syst.}) \pm 4.0 ({
m lumi.}) \; {
m pb}$$
 $R_{8 \; TeV/7 \; TeV} = 1.14 \pm 0.12 ({
m stat.}) \, \pm 0.14 ({
m syst.})$

Top quark mass and properties

Differential cross section in ttbar pairs

$$\frac{1}{\sigma_{t\bar{t}}} \frac{d\sigma_{t\bar{t}}}{dX}$$

- Test SM predictions in differential distributions
 - Constrain MC predictions
 - Sensitive to new physics
- Unfold detector effects
- MC describes data well
- Both I+jets and dilepton channels

TOP-11-013

Top quark: Wtb coupling

- Branching fraction: $R = B(t \to Wb)/B(t \to Wq)$
- Fully "data-driven" background determination
 - Use wrong assignment in Mlb distribution
- b-tagging multiplicity parametrized as function of R, ε_b , ε_a
 - Fit R, using ε_b from inclusive b-jet production

W helicity & constraints on Wtb vertex

- Measure W helicity fraction in ttbar I+jets
 - Top decays before hadronization
 - Spin is directly transferred to its decay products (t→Wb)
- Sensitive to anomalous tWb coupling

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}^{*}} = \frac{3}{8} (1 + \cos\theta_{\ell}^{*})^{2} F_{R} + \frac{3}{8} (1 - \cos\theta_{\ell}^{*})^{2} F_{L} + \frac{3}{4} \sin^{2}\theta_{\ell}^{*} F_{0}$$

- Measure θ^* : angle between lepton and b-jet (in W rest frame)
 - 3 possible W polarization modes:

$$F_0 = 0.698$$
, $F_L = 0.301$, $F_R = 4.1 \times 10^{-4}$.

$$F_0 = 0.567 \pm 0.074 (\text{stat.}) \pm 0.047 (\text{syst.})$$

 $F_L = 0.393 \pm 0.045 (\text{stat.}) \pm 0.029 (\text{syst.})$
 $F_R = 0.040 \pm 0.035 (\text{stat.}) \pm 0.044 (\text{syst.})$

⇒results consistent with SM

Set limits on anomalous couplings of Wtb vertex

SUSY at 8 TeV

Michele Gallinaro - "Highlights from recent CMS results" - cHarged 2012, Uppsala - Oct. 8, 2012

No SUSY...yet

CMSSM limits

Next is naturalness:

- Search for stop and sbottom in gluino decays
- Direct search for light stop and sbottom
- Chargino and neutralino production

Exotica at 8 TeV: Z'/W'/dijets

Exotica at 8 TeV: Z'/W'/dijets

Higgs boson

5 decay modes studied:

High mass: WW, ZZ

Low mass: bb, ττ, WW, ZZ, γγ

Low mass region is very challenging

- Very good mass resolution ~1% ($\gamma\gamma$, 4I)

Decay	Production	No. of	m _H range	Int. Lum. (fb ⁻¹)	
mode	tagging	subchannels	(GeV)	7 TeV	8 TeV
$\gamma\gamma$	untagged dijet (VBF)	4 1 or 2	110–150	5.1	5.3
ZZ	untagged	3	110-600	5.1	5.3
ww	untagged dijet (VBF)	4 1 or 2	110-600	4.9	5.1
ττ	untagged dijet (VBF)	16 4	110–145	4.9	5.1
bb	lepton, E _T ^{miss} (VH)	10	110–135	5.0	5.1

H→γγ: analysis strategy

- Analysis optimized by categorizing events by γ ID
 - MVA analysis for γ-ID and event classification
 - Divide events into non-overlapping samples
 - Cross-check with cut-based analysis
 - MVA gives ~15% better sensitivity

H→γγ: results

- Largest excess at ~125 GeV
 - Similar excess in 2011 and 2012

$H \rightarrow ZZ \rightarrow 4e, 4\mu, 2e2\mu$

- Signal: 4 isolated leptons from same vertex
 - -Small background
 - -Fully reconstructed, mass resolution ~1%

The golden channel

$H \rightarrow ZZ \rightarrow 4$

Mass distribution

$\sqrt{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}, L = 5.3 \text{ fb}^{-1}$ CMS Events / 3 GeV Events / 3 GeV Data 16 $K_D > 0.5$ Zγ*, ZZ m_H=125 GeV 12 10 m₄ (GeV) 120 140 8 6 2 100 120 160 140 180 m_{4ℓ} (GeV)

Significance slightly smaller than expectations

Michele Gallinaro - "Highlights from recent CMS results" - cHarged 2012, Uppsala - Oct. 8, 2012

Low mass resolution channels

Decay	Production	No. of	$m_{\rm H}$ range	Int. Lu	Int. Lum. (fb ⁻¹)	
mode	tagging	subchannels	(GeV)	7 TeV	8 TeV	
WW	untagged dijet (VBF)	4 1 or 2	110–600	4.9	5.1	
ττ	untagged dijet (VBF)	16 4	110–145	4.9	5.1	
bb	lepton, $E_{\rm T}^{\rm miss}$ (VH)	10	110–135	5.0	5.1	

Michele Gallinaro - "Highlights from recent CMS results" - cHarged 2012, Uppsala - Oct. 8, 2012

Combined: SM Higgs limits

Combined results

Excess at 125 GeV:

-in 7 TeV data: 3.0 σ

 $-in 8 \text{ TeV data: } 3.8 \text{ } \sigma$

High sensitivity channels: γγ, 4I

Decay mode/combination	Expected (σ)	Observed (σ)	
$\gamma\gamma$	2.8	4.1	
ZZ	3.6	3.1	
$\tau\tau$ + bb	2.4	0.4	
$\gamma\gamma$ + ZZ	4.7	5.0	
$\gamma\gamma$ + ZZ + WW	5.2	5.1	
$\gamma\gamma + ZZ + WW + \tau\tau + bb$	5.8	5.0	

Combined results

Mass & couplings

Model-independent mass measurement from high resolution channels:

$$\Rightarrow$$
 m_X=125±0.4(stat)±0.5(syst) GeV

Michele Gallinaro - "Highlights from recent CMS results" - cHarged 2012, Uppsala - Oct. 8, 2012

BSM Higgs overview

- Extensions to the SM:
 - Fermiophobic Higgs
- Supersymmetry
 - MSSM with 2 Higgs doublets:
 - $H^0 \rightarrow bb, \tau\tau$
 - $H^{\pm} \rightarrow \tau \nu$
- NMSSM with additional scalar field: a→μ⁺μ
 - Add scalar singlet to MSSM family

Michele Gallinaro - "Highlights from recent CMS results" - cHarged 20

Charged Higgs

Look for three classes of events:

- Tau+jets, tau+lepton, eμ final states

Alexandros ATTIKIS: "Search for H+-> tau+nu with fully hadronic final state in CMS" Pietro VISCHIA: "Search for H+-> tau+nu with I+tau(->had) and II final states in CMS" Aruna NAYAK: "Physics object reconstruction in CMS: tau, b-jets, Etmiss..." Matti KORTELAINEN: "Data-driven background estimation in CMS" Lauri WENDLAND: "Future H+ prospects at LHC"

Summary

- 2012 run at 8 TeV started very successfully
- Physics analyses in full force
 - Impressive turn-around of physics results

- Analysis of 2011+2012 data:
 - ⇒discovered new boson with a mass of 125 GeV
- Looking forward to surprises