

Search for MSSM $H^+ \to \tau \nu$ with $\ell + \tau (\to had)$ and $\ell \ell$ final states in CMS

Pietro Vischia¹
On behalf of the CMS collaboration

¹LIP-Lisboa

cH[±]arged 2012, Uppsala

Outline

Theoretical summary and final state choice

Reconstruction of objects

$\ell \tau_h$, $\ell = e, \mu$ final states

Event selection

Background estimation

Yields and systematics

Limits on $Br(t \rightarrow H^+b)$

$e\mu$ final state

Event selection

Yields and systematics

Limits on $Br(t \rightarrow H^+b)$

Combined limits on $Br(t \to H^+b)$

Summary

References

Charged Higgs in top quark physics

- Low mass region $(M_{H^+} < M_t M_b)$: H^+ can be produced in top decays $t \to H^+ b$
- High mass region $(M_{H^+} > M_t M_b)$: H^+ can be produced in association with top: $pp \to tbH^+(tH^+)$
- For $tan(\beta) > 5$, preferential charged Higgs decay is $H^+ \to \tau \nu_{\tau}$
- H^+ decay modes alter au yields in $t\bar{t}$ production w.r.t. SM
- Search assumptions:
 - $M_{H^+} < M_t M_b$
 - $Br(H^+ \rightarrow \tau \nu_{\tau}) = 1$
- Contributions from:
 - pp → HbHb
 - pp → HbWb
- CMS Collaboration:

JHEP07 (2012) 143 [1]

(from D0 Note 5715-CONF)

Final states considered

- Representative diagrams for the $\ell\tau_h$ and $e\mu$ final states
- SM expectations: assume theoretical prediction $\sigma(t\bar{t}) = 165^{+4}_{-9}(scale)^{+7}_{-7}(PDF) \ pb$

Reconstruction of physics objects / I

- Particle flow: full reconstruction of the particles in the event [2]
- Muons: simultaneous global track fit (tracker and muon chambers) [3]
- Electrons: tracker hits matched to EM calorimeter energy deposits
- Jets: anti-kt clustering algorithm with radius 0.5
- Missing E_T : $\Sigma \vec{p_T}$ of all reco objects in the volume of the detector
- $\tau \rightarrow$ hadrons: hadron-plus-strips algorithm
- More details in Arun's talk

Reconstruction of physics objects: hadronic τ

- Tau decay:
 - to light leptons (e,μ) and 2 neutrinos: $Br \sim 35\%$
 - to hadrons and one neutrino: $Br \sim 65\%$.
- Identification algorithm: Hadron+Strips (HPS)
- Decay mode finding discriminator (mass constraints on constituents)
- Many isolation working points for the cuts on particles in isolation code
- $e(\mu)$ rejection: low compatibility of leading had^{\pm} with $e(\mu)$ hypothesis

Dominant hadronic decay modes

Decay mode	Res.	Branching frac. (%)
$ au^- ightarrow h^- u_ au$		11.6%
$ au^- ightarrow h^- \pi^0 u_ au$	ρ^-	26.0%
$ au^- ightarrow h^- \pi^0 \pi^0 u_ au$	a_1^-	9.5%
$ au^- ightarrow h^- h^+ h^- u_ au$	a ₁	9.8%
$ au^- ightarrow h^- h^+ h^- \pi^0 u_ au$		4.8%

From JINST, 7 (2012) P01001 [4]

Hadronic τ identification performance

- Fake rates for jets commissioned in data and simulation
 - qcd-type (gluon-enriched) from di-jet events
 - ullet Z- and W- type (quark-enriched) from W+jets and μ -enriched QCD sample
- ullet Fake rates for electrons/muons: tag and probe in $Z \to \ell\ell$ events
- Reconstruction efficiency: $Z \rightarrow \tau \tau \rightarrow \mu \tau_h$ events (tag and probe + fit)

Simulation of the physics processes

- TAUOLA package used to simulate tau decays
- Full detector simulation based on GEANT4

Process	σ (pb)	Generator
MSSM signal		PYTHIA
tī	165	MADGRAPH + PYTHIA
	7.87 (7.87) tW channel	POWHEG
Single top	42.6 (22.0) t channel	POWHEG
	2.7 (1.5) s channel	POWHEG
W+Jets	31314	MADGRAPH + PYTHIA
$\overline{ extit{DY} ightarrow \ell \ell}$	3048	MADGRAPH + PYTHIA
QCD (μ enriched)	84679	PYTHIA
WW	43	PYTHIA
WZ	18.2	PYTHIA
ZZ	5.9	PYTHIA

$\ell \tau_h$, $\ell = e, \mu$ final states

Event selection

- Trigger: single lepton trigger.
 - $e\tau_h$: e+jets trigger (more aggressive on backgrounds) $p_T^e > 17 - 27 \frac{GeV}{2}$, ≥ 2 jets w/ $p_T > 30(25) \frac{GeV}{2}$, $H_T^{miss} > 15 - 20 \frac{GeV}{2}$ $(H_{\tau}^{miss} := |\Sigma p_{\tau}^{jet}|)$
 - $\mu \tau_h$: single muon trigger ($p_{\tau}^{\mu} > 17 24 \frac{GeV}{2}$)
 - Integrated luminosity: $1.99 \pm 0.05 \text{ fb}^{-1}$ ($e\tau_h$), $2.22 \pm 0.05 \text{ fb}^{-1}$ ($\mu\tau_h$)
- Selection: 1 lepton, \geq 2 jets, E_{τ}^{miss} , \geq 1 b-tags, $1\tau_h$, opposite sign
 - One isolated electron(muon) with $p_T > 35$ (30) $\frac{GeV}{c}$, $|\eta| < 2.5$ (2.1)
 - \geq 2 jets with $p_T > 35$ (30) $\frac{GeV}{2}$, $|\eta| < 2.4$
 - $E_{\tau}^{miss} > 45$ (40) GeV for $e\tau_h (\mu \tau_h)$
 - > 1 b-tagged jet (track counting based algorithm)
 - One τ_h with $p_T > 20 \frac{GeV}{c}$, $|\eta| < 2.4$
 - Opposite charges between τ and $e(\mu)$
- Lepton isolation: relative w.r.t. lepton ρ_T
 - Isolation of a lepton candidate: $I = \sum p_T$ reconstructed particles within $\Delta R < 0.3$ around lepton direction
 - Isolation cut: $rellso = \frac{1}{p_e^{\mu}(\mu)} < 0.1 (0.2)$
 - Separation from any other selected jet in $\Delta R > 0.3$
 - Vetoed events with additional isolated leptons

■ Muon p_T

- Shown at selection step: 1 lepton + 3 jets
- Signal negligible at this level

Control distributions - II

- Shown at selection step: $1 + 3 \text{ jets}, e_t^{miss}, 1 \text{ b-tag}$
- Only irreducible backgrounds
- Harder p_T spectrum for H^+

Main backgrounds

- Irreducible $t ar t o W^+ b W^- ar b o \ell
 u b au_b
 u ar b$
- Misidentified τ_h
 - Dominant contributions:
 - W + jets
 - $t\bar{t} \rightarrow W^+bW^-\bar{b} \rightarrow \ell\nu bqq'\bar{b}$
 - Fake probability changes for quark and gluon jets modeled by

$$R^{
m jet} = \sqrt{\sigma_{\eta\eta}^2 + \sigma_{\phi\phi}^2}$$

(from arXiv:1106:3076)

Jet $\rightarrow \tau_h$ probability

k-Nearest-Neighbours algorithm:

- Phase space: $(p_T^{jet}, |\eta|^{jet}, R^{jet})$
- Training set of jets from dedicated real- τ_h -free samples
- Classify jets near a reconstructed τ_h as fakes
- Obtain probability of faking a $\tau_h \propto$ number of fakes in the nearest 20 jets
- Extract a weights matrix $P(p_T^{jet}, |\eta|^{jet}, R_{jet})$
- Estimate in g/q-jets dominated samples and average the resulting probability

(from TMVA Users Guide)

Data driven background estimation

- Apply jet $\rightarrow \tau_h$ probability to inclusive jet distributions
- Obtain number of fake events as ratio between reweighted/unweighted jet distributions
- See Matti's talk for details

Cutflow and yields

Source	$N_{ m ev}^{ m e au_h}\pm{ m stat.}\pm{ m syst.}$	$N_{\mathrm{ev}}^{\mu \tau_{\mathrm{h}}} \pm \mathrm{stat.} \pm \mathrm{syst.}$
HH+HW, $m_{\mathrm{H}^+} = 120 \mathrm{GeV}$, $\mathcal{B}(t \to H^+b) = 0.05$	$51\pm3\pm8$	$89 \pm 4 \pm 13$
misidentified τ (from data)	$54 \pm 6 \pm 8$	$89 \pm 9 \pm 11$
${ m tar t} o { m WbWar b} o \ell u { m b} \ au u ar b$	$100 \pm 3 \pm 14$	$162\pm4\pm23$
$t \overline{t} o WbW\overline{b} o \ell \nu b \ \ell \overline{\nu} \overline{b}$	$9.0 \pm 0.9 \pm 1.8$	$13.0 \pm 1.2 \pm 2.5$
$\mathrm{Z}/\gamma^* ightarrow \mathrm{ee}$, $\mu\mu$	$4.8 \pm 1.8 \pm 1.3$	$0.7 \pm 0.7 \pm 0.7$
$Z/\gamma^* o au au$	$17.0 \pm 3.3 \pm 3.0$	$26.0 \pm 4.3 \pm 6.1$
single top quark	$7.9 \pm 0.4 \pm 1.1$	$13.5 \pm 0.5 \pm 1.9$
diboson	$1.3 \pm 0.1 \pm 0.2$	$2.0 \pm 0.2 \pm 0.3$
Total expected background	$194 \pm 8 \pm 20$	$306 \pm 11 \pm 32$
Data	176	288

Sources of systematic uncertainty ($\mu \tau_h$ channel) - I

- τ-fake events from data driven method
- τ jet ID and jet, $\ell \to \tau$ misidentification rate: from tag and probe [4]
- Pileup modeling due to the reweighting of simulated events according to measured vertexes

	НН	WH	$t\bar{t}_{\ell au}$	$t\bar{t}_{\ell\ell}$	misident. $ au$	Single top	diboson	DY(μμ)	DY(ττ)
JES+JER+E ^{miss}	6.0	5.0	5.0	4.0		6.0	11.0	100.0	22.0
cross section		+7 -1				8.0	4.0	4.	.0
pileup modeling	4.0	2.0	2.0	8.0		2.0	3.0	25.0	4.0
MC stat	5.0	4.0	2.0	9.0		4.0	9.0	100.0	16.0
luminosity		2.	2			2.2			
τ-jet id	6.0	6.0	6.0			6.0	6.0		6.0
jet, $\ell ightarrow au$ misident.				15.0				15.0	
b-jet tagging	6.0	5.0	5.0	5.0		7.0			
jet→ b misident.							8.0	8.0	9.0
misident. τ (stat.)					10.0				
misident. τ (syst.)					12.0				
lepton selections		2.	.0				2.0		

$e\tau_h$ channel table found in backup

Sources of systematic uncertainty ($\mu \tau_h$ channel) - II

- Jet energy/resolution and E_T^{miss} scale: from p_T balance in dijet and γ -jet events
- b-tagging efficiency and misidentification rate: from b-jets properties [5]
- Lepton veto application: from uncertainty in lepton reconstruction, identification and isolation efficiencies

	НН	WH	$t \bar{t}_{\ell au}$	$t\bar{t}_{\ell\ell}$	misident. $ au$	Single top	diboson	DY(μμ)	DY(ττ)
JES+JER+E _T ^{miss}	6.0	5.0	5.0	4.0		6.0	11.0	100.0	22.0
cross section		+7 -1				8.0	4.0	4	.0
pileup modeling	4.0	2.0	2.0	8.0		2.0	3.0	25.0	4.0
MC stat	5.0	4.0	2.0	9.0		4.0	9.0	100.0	16.0
luminosity	2.2					2.2			
τ-jet id	6.0	6.0	6.0			6.0	6.0		6.0
jet, $\ell ightarrow au$ misident.				15.0				15.0	
b-jet tagging	6.0	5.0	5.0	5.0		7.0			
$jet \rightarrow b$ misident.							8.0	8.0	9.0
misident. τ (stat.)					10.0				
misident. τ (syst.)					12.0				
lepton selections		2.	0			2.0			

- Expectations from simulation compared with observed data yields
- ullet Assumption: any excess/deficit w.r.t expected SM yield is due to $t o H^+ b$

Limits, $e\tau_h$, $\mu\tau_h$ final states

- $e\tau_h$, $\mu\tau_h$ limits
 - Reach 5%
 - Systematics drive the estimation
 - Large bands at high masses
 - More statistics needed
 - Benefit from analysis improvement

$e\mu$ final state

Event selection

- Trigger: electron-muon trigger
 - One electron with $p_T > 8 \frac{GeV}{c}$ and a muon with $pT > 17 \frac{GeV}{c}$ OR one electron with $p_T > 17 \frac{GeV}{s}$ and a muon with $p_T > 8 \frac{GeV}{s}$
 - Integrated luminosity: $2.27 \pm 0.05 \text{ fb}^{-1}$
- Selection: $1e\mu$ pair, > 2 jets, veto low $e\mu$ masses, opposite sign
 - \geq 1 isolated electron and \geq 1 isolated muon with $p_T > 20 \frac{GeV}{2}$, |n| < 2.5 (2.4) for $e(\mu)$
 - Two or more jets with $p_T > 30 \frac{GeV}{c}$, $|\eta| < 2.4$
 - $e\mu$ invariant mass $M_{e\mu} > 12 \frac{GeV}{c^2}$
 - Electron and muon required to have opposite electric charges
- Lepton isolation: relative w.r.t. lepton p_T
 - Isolation cut: $rellso = \frac{1}{n^{e(\mu)}} < 0.15$
 - Separation from any other selected jet in $\Delta R > 0.4$

Cutflow and yields

- Expected deficit w.r.t. SM
 - Selection efficiency: $\epsilon(H^+ \to \ell \nu_\ell) < \epsilon(W^+ \to \ell \nu_\ell)$
 - \dot{H}^+ case:

softer lepton p_T spectrum

Source	$N_{ m ev}^{ m e\mu} \pm { m stat.} \pm { m syst.}$
HH+WH, $m_{\mathrm{H}^+}=120\mathrm{GeV}$, $\mathcal{B}(t\toH^+b)=0.05$	$125\pm9\pm13$
t t dileptons	$3423 \pm 35 \pm 405$
other t t	$23 \pm 3 \pm 3$
$Z/\gamma^* o \ell\ell$	$192\pm12\pm19$
W+jets	$14\pm 6\pm 2$
single top quark	$166\pm3\pm18$
diboson	$48\pm2\pm5$
Total expected background	$3866 \pm 38 \pm 406$
Data	3875

Sources of systematic uncertainty

• Same methods as in $\ell \tau_h$ channels

	HH	WH	tī	$DY(\ell\ell)$	W+jets	Single top	diboson	
JES+JER+E _T ^{miss}	2.1	2.0	2.0	6.0	10.8	4.0	6.5	
cross section	+7 -10			4.3	5.0	7.4	4.0	
pileup modeling	4.5	4.5	5.0	5.5	4.0	5.5	5.5	
MC stat	5.3	7.9	1.0	6.5	42.9	1.9	4.3	
luminosity	2.2							
dilepton selection	2.5							

Limits, $e\mu$ final state

- eμ channel limit o(20%)
 - Irreducible SM tt background dominating
 - Would benefit from improved analysis techniques

Model-independent combined limit

- Combined limit calculated for all final states, $\ell \tau_h$, $e\mu$, $\tau_h + jets$
- Details on fully hadronic final state can be found in Alexandros' talk
- Combined limit is driven by systematics

Model-dependent exclusion region

- Exclusion region in the MSSM plane
- $M_{SUSY-breaking}^{squarkmass} = 1$ TeV, $\mu_{higgsino} = +200$ GeV
- Other parameters in backup

Summary

- Search for light MSSM H^\pm boson in ℓau_h and $e \mu$ final states at $\sqrt{s} = 7$ TeV
- No deviations from expected limit with luminosities of 1 to 2 fb⁻¹

References I

CMS Collaboration.

Search for a light charged Higgs boson in top quark decays in pp collisions at $\sqrt{s} = 7$ TeV Journal of High Energy Physics, 07 (2012) 143.

CMS Collaboration

Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and $E_T^{\it miss}$

CMS-PAS-PFT-09-001, [CDS:1194487]

CMS Collaboration

Performance of muon identification in *pp* collisions at $\sqrt{s} = 7$ *TeV* CMS-PAS-MUO-10-002, [CDS:1279140]

CMS Collaboration

Performance of τ -lepton reconstruction and identification in CMS JINST, 7, P01001 (2012)

References II

CMS Collaboration
Performance of the b-jet identification in CMS
CMS-PAS-BTV-11-001, [CDS: 1366061]

BACKUP SLIDES

BACKUP: The Large Hadron Collider

- 26.7 km pp collider located at CERN
- Superconducting magnets
- $T \sim 1.8 \ K, p \sim 10^{13} \ atm$
- Designed for $\sqrt{s} = 14 \text{ TeV}$
 - Operated at 7 TeV (2011)
 - Operated at 7 TeV (2011)
 Operated at 8 TeV (2012)
- Current $L^{inst} \sim 8 \times 10^{33} cm^{-2} s^{-1}$
- Delivered: 6.10 fb⁻¹ (2011)
- Results presented here [1]:
 - Data recorded by CMS detector
 - $L^{inst} \sim 3 \times 10^{33} cm^{-2} s^{-1}$
 - $\sqrt{s} = 7 \text{ TeV}$
 - $L^{int} = 1 2 fb^{-1}$)

BACKUP: The Compact Muon Solenoid

BACKUP: b-jet tagging

• Eff. from μ -jet events

Mistag rate

BACKUP: Control distributions at (1 μ , 3 jets) step

• Muon η (1 μ , 3 jets) step

BACKUP: Control distributions at (1 μ , 3 jets, E_T^{miss} , 1 b-jet) step

• Tau η (1 μ , 3 jets, E_T^{miss} , 1 b-jet) step

BACKUP: Control distributions at (1e, 3 jets, E_T^{miss} , 1 b-jet) step

• Tau η (1e, 3 jets, E_T^{miss} , 1 b-jet) step

BACKUP: Fake rate estimation strategy

- Calculate probability $w(jet \rightarrow \tau)$
 - Operate at selection step (1 lep)+(MET)+(≥ 3 jets)+(≥ 1 b-tagged jet)
 - ullet $\ell+\geq 3$ jets event, with one jet faking au
 - $\bullet \ \ \, \text{From multi-jet data sample ($\it "W-Jets"$, mainly g-jets} \to \text{overestimation})$
 - $\bullet \ \ \, \text{From photon+jet data sample (``QCD-Jets'', mainly q-jets} \rightarrow \text{overestimation)}$
 - Build phase space: $(p_T^{jet}, |\eta^{jet}|, R^{jet} = \sqrt{\sigma_{\eta\eta}^2 + \sigma_{\phi\phi}^2})$
 - Divide inclusive distributions into two categories:
 - Jets that fake taus (cat. F): jet with the nearest τ within $\Delta R < 0.3$
 - Jets that don't fake taus (cat. NF): all the others
 - Apply to the two subsets k-nearest-neighbours algorithm in the phase space
 - ullet Obtain weight for each jet describing the probability of faking a au
 - Ratio between the weighted and unweighted distribution is $w(jet \rightarrow \tau)$
- ullet Apply the fake rate probability to the data sample at the 1au selection step
- Obtain an estimate of the number of the background events faking taus

BACKUP: $w(jet \rightarrow \tau)$ estimate - kNN algorithm details

- Weights parametrized in the phase space and determined by a multivariate method
- Each jet is compared with the nearest jets which populate the phase space
- Count N(nearest jets in F) and N(nearest jets in NF)
- Estimator: number of the nearest jets that are in the F category
- Usually, training performed in a fixed volume in the phase space (PDE-RS algorithm)
- Nearest-Neighbour algorithm: training within a fixed number of jets, instead of in a fixed volume
 - Volume is resized as a function of the local data density
 - Finer description of local features of high-density regions
- Final per-jet weight is proportional to Niets faking taus
- Fake probability as a function of each variable from ratio incl weighted distribution incl unweighted distribution

BACKUP: Fake tau backgrounds using data driven method, after

• $\mu \tau_h$ channels

Sample	MC expectation	Estimated from MC	Estimated from data	Residual from MC
QCD multi-jet		105.1	113.0	34.4
W+jets	120.1 ± 8.9	147.3	144.5	44.3
Average		126.2±21.1	128.8 ± 15.8	39.4±4.9

eτ_h channels

Sample	MC expectation	Estimated from MC	Estimated from data	Residual from MC
QCD multi-jet	54.9		64.1	19.6
W+jets	57.9 ± 5.1	78.9	86.7	27.4
Average		66.9±12.0	75.4 ± 11.3	23.5±3.9

- MC expectation: yields from simulation (W + jets, $t\bar{t} \rightarrow \ell \nu b \ell \nu \bar{b}$
- Estimated from MC: apply data driven method to simulation events
- Estimated from data: apply data driven method to data. After res. subtraction
- Residual from MC: apply data driven method to other MC and remove from data

BACKUP: sources of systematic uncertainty ($e\tau_h$ channel)

	НН	WH	$t\bar{t}_{\ell au}$	$t\bar{t}_{\ell\ell}$	misident. τ	Single top	diboson	$DY(\mu\mu)$	$\mathrm{DY}(\tau\tau)$
$JES+JER+E_T^{miss}$	8	6	4	5		6	9	21	14
cross section		+7	7.0 10			8.0	4.0	4.	.0
pileup modeling	3	4	2	3		3	5	17	3
MC stat	6	5	3	10		5	7	37	20
luminosity		2	.2			2.2			
τ -jet id	6.0	6.0	6.0			6.0	6.0		6.0
jet, $\ell \to \tau$ misident.				15.0				15.0	
b-jet tagging	6	6	5	5		7			
jet→b misident.							8	7	8
misident. τ (stat.)					12				
misident. τ (syst.)					15				
lepton selections	3.0						3.0		
trigger		1.	.0			1.0			

BACKUP: Method for computing the limits

- Expectations from simulation compared with observed data yields
- Assumption: any excess/deficit w.r.t expected SM yield is due to $t \to H^+b$ Expected values for $e\mu$ channel

BACKUP: 95% CL upper limits for $Br(t \rightarrow H^+b)$

	95% CL upper limit on $\mathcal{B}(t o H^+b)$									
m_{H^+}		Expected limit								
(GeV)	-2σ	-1σ	median	$+1\sigma$	+2 σ	limit				
80	0.018	0.022	0.029	0.040	0.054	0.041				
100	0.014	0.018	0.024	0.032	0.043	0.035				
120	0.013	0.015	0.028	0.027	0.040	0.028				
140	0.009	0.011	0.014	0.021	0.030	0.022				
150	0.008	0.010	0.013	0.019	0.027	0.023				
160	0.008	0.009	0.011	0.016	0.023	0.019				

BACKUP: MSSM m_h^{max} scenario for $tan(\beta)$ exclusion

- M_{SUSY} = 1 TeV (common soft-SUSY-breaking squark mass of the third generation)
- $\mu = +200 \; GeV \; (Higgsino \; mass \; parameter)$
- M₂ = 200 GeV (SU(2)-gaugino mass parameter)
- $m_{\tilde{q}} = 0.8 \times M_{SUSY}$ (gluino mass)
- $X_t = 2 \times M_{SUSY}$ ($A_t \frac{\mu}{\tan(\beta)}$ stop mixing parameter)
- $A_b = A_t$ (trilinear stop and sbottom couplings)
- M_1 fixed via unification relation $M_1 = \frac{5}{3}M_2 sin(\theta_W) cos(\theta_W)$

BACKUP: Exclusion region in the MSSM $(M_A, tan(\beta))$ space for analysis

Exclusion region (all channels)

