Search for $H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ with fully hadronic final state in CMS

Alexandros Attikis for the CMS Collaboration

University of Cyprus

October 9, 2012

Production and Decay of *H*[±] Final State Topology Dominant Backgrounds

Event Reconstruction

Overview au-jet Identification b-tagging Data/Simulation Corrections

Event Selection
Trigger
Offline Selections
Efficiencies

- Measurements Trigger Efficiency
- Results
 Data-driven plots
 Event Yield
 Uncertainties
 Exclusion Limits
- 6 Conclusions
- 7 Bibliography

Strong evidence of Higgs-like particle with $m_{h^0} = 125 \,\text{GeV}/c^2$:

- Allowed MSSM parameter range still remains very large
- Difficult to set stringent bounds on MSSM just by measuring h^0
- H^{\pm} discovery = unequivocal proof of BSM

Common to distinguish between "Light" and "Heavy" H^{\pm} :

•
$$m_{H^{\pm}} \leq m_t - m_b$$

$$\Big(p p o t ar t o b H^\pm b {\mathsf W}^\mp$$
 with $\sigma_{t ar t} = 164.57\,{
m pb} \Big)$

$$BR(H^{\pm} \rightarrow X)$$
 for $\tan \beta = 10$

Final State Topology

Introduction

Four main final states for dominant $t\bar{t} \to bH^{\pm}bW^{\mp}$ [1]:

- **1** Semi-leptonic; $H^{\pm} \to \tau^{\pm} \nu_{\tau} \to \text{hadrons } \nu_{\tau} \nu_{\tau}$. $W^{\pm} \to \ell^{\pm} \nu_{\ell}$
- Another semi-leptonic; $H^{\pm} \to \tau^{\pm} \nu_{\tau} \to \ell^{\pm} \nu_{\ell} \nu_{\tau} \nu_{\tau}$, $W^{\pm} \to q\bar{q}'$
- Di-lepton; $H^{\pm} \to \tau^{\pm} \nu_{\tau} \to \ell^{\pm} \nu_{\ell} \nu_{\tau} \nu_{\tau}$. $W^{\pm} \to \ell^{\pm} \nu_{\ell}$
- Fully hadronic; $H^{\pm} \to \tau^{\pm} \nu_{\tau} \to \text{hadrons } \nu_{\tau} \nu_{\tau}$, $W^{\pm} \to q\bar{q}'$
 - One τ jet $(H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau})$
 - At least two hadronic jets (W[±] → qq̄')
 - Two b-jets $(t \rightarrow bH^{\pm}, \bar{t} \rightarrow \bar{b}W^{\pm})$
 - Large E_T^{miss} $(H^{\pm} \to \tau^{\pm} \nu_{\tau}, \tau^{\pm} \to \text{hadrons } \nu_{\tau})$
 - Reconstruct m_T (and $m_{H^{\pm}}$ for light H^{\pm}) (more sensitive than leptonic channels)

semi-leptonic → hadrons

di-lepton

fully-hadronic

Three types:

- QCD multi-jet background:
 - Dominant reducible background
 - Fake $E_{\mathrm{T}}^{\mathrm{miss}}$ and jets mimicking au jets/ b-jets
 - Suppressed with tight au-jet ID, large $extbf{\emph{E}}_{ extsf{T}}^{ ext{miss}}$, $\Delta \phi$ (au jet, $extbf{\emph{E}}_{ extsf{T}}^{ ext{miss}}$)
 - Measured from data (more from Matti)
- EWK+tt̄ genuine τ background:
 - Events with \geq 1 au-lepton within acceptance
 - Largely irreducible background
 - W + jets, SM $t\bar{t}$, $Z^0/\gamma^* \rightarrow \ell^+\ell^-$, single-top, di-boson (WW, WZ, ZZ)
 - Partly suppressed with b-tagging, $R_{ au}$ variable
 - Measured from data (more from Matti)
- **3** EWK+ $t\bar{t}$ fake τ background:
 - ullet Events with no au-lepton in final state OR outside acceptance
 - Minor background (~ 5% to Event yield)
 - Pass selections due to $e^{\pm}/\mu^{\pm}/\text{jet}$ mis-identified as τ jets
 - Measured by use of simulations

The Particle Flow (PF) algorithm:

- Aims to reconstruct a particle-based description of the full event
- Combines sub-detector information (Tracker, ECAL, HCAL, Muon systems)
 - Iterative tracking (charged particles)
 - Calorimeter clustering (neutral particles)
 - Link algorithm (tracks

 clusters)
 - All final-state particles reconstructed (e^{\pm} , μ^{\pm} , γ , charged/neutral hadrons)
- PF particles \rightarrow higher-level objects (E_T^{miss} , τ jets, b-jets)

Object reconstruction:

- Muons: Global fit to hits in tracker and muon systems
- Electrons: Energy clusters in ECAL matched to tracker hits
- Jets: Using PF particles and anti- k_{T} algorithm with R = 0.5
- \bullet au jets: PF jets as input to Hadron plus Strips (HPS) algo
- b-jets: PF jets as input to Track Counting High Efficiency (TCHE) algo

• PF
$$E_{T}^{miss} = -\sum_{i}^{PF particles} \vec{E}_{T, i}$$

τ jets identified with Hadron plus Strips (HPS) algo [2]:

- Addresses photon conversions in tracker $(\gamma \rightarrow e^+e^-)$
- Combines PF EM particles (γ, e^{\pm}) in "strips" (broadening of calo deposit)
- "Strips" ($\equiv \pi^0$'s) are combined with PF charged hadrons
- Individual decay modes reconstructed (kinematic fits to ρ^{\pm} , α_1^{\pm})
- If multiple decay modes, hypothesis with highest p_{T}^{τ} jet chosen
- Adjustable isolation cone $\Delta R_i = 0.5$ criteria (threshold for particles considered)
- Improved bkg rejection $+ \tau$ jet energy (no signal cone \Rightarrow immune to spillages)

(HPS decay modes)

Process	$\Gamma_i/\Gamma_{\text{total}}(\%)$	$\sum_{i} \Gamma_{i} / \Gamma_{\text{total}} (\%$
hadronic 1-prong	_	48.4
$ au^- o h^- v_ au$	11.6	_
$ au^- ightarrow ho^- v_ au ightarrow h^- \pi^0 v_ au$	26.0	_
$\tau^- \to \alpha_1^- \nu_\tau \to h^- \pi^0 \pi^0 \nu_\tau$	10.8	_
hadronic 3-prong	_	14.6
$\tau^- \to \alpha_1^- \nu_\tau \to h^- h^+ h^- \nu_\tau$	9.8	_
$\tau^- \to h^- h^+ h^- \pi^0 \nu_\tau$	4.8	_
Total	_	63.0
Other hadronic modes	_	1.7

τ-jet Identification

b-tagging with Track Counting High Efficiency (TCHE) algo [3]:

- Maximises efficiency of finding b-jets
- Relies on tracks with large impact parameter
 - $d^{track} = L \sin \delta = \beta \gamma c \tau \sin \delta$
- Tracks ordered in decreasing d^{track} significance:
 - $S_{IP} = rac{\mathrm{d}^{\mathrm{track}}}{\sigma_{\mathrm{d}\mathrm{track}}}$
- Jet b-tagged if $S_{IP}^{2^{nd}\text{Trk.}} > 1.7$
- For $p_{\mathrm{T}}=50-80\,\mathrm{GeV}/c$ tagging rate $\simeq 76\%$ (mis-tagging rate $\simeq 13\%$)
- Preferred due to small systematic uncertainties (compared to other options)

Official CMS MC production of simulated samples used:

- Centre-of-mass energy set to 7 TeV
- Detector response with GEANT package
- \bullet Samples normalised by their cross-section to 2.3 fb⁻¹
- TAUOLA [4] package used to simulate τ -leptons decays (H^{\pm} , W^{\pm})
- Simulated events weighted according to true pile-up
 - Flat distribution up to 10, and Poisson with a mean of 20 interactions
 - ullet Re-weight by true pile-up with 3D matrix method (± 1 out-of-time BC)
- JEC applied to account for UE, pile-up
- UE activity addressed by employing PYTHIA Tune Z2 [5]
- Difference in b-tagging efficiency accounted (tagging & mis-tagging scale factors)
- Difference in trigger efficiency accounted with scale factors (more later)

Best available option the single τ jet $+ E_{T}^{miss}$ trigger:

- Low thresholds ⇒ gain efficiency
- QCD multi-jet suppression (E_T^{miss} & τ jet isolation)
- Three different run ranges
- Total integrated luminosity of 2.3 fb⁻¹ (Run 2011A)
- ullet Efficiency measured separately for au-part and $m{\it E}_{ extsf{T}}^{ ext{miss}}$ part (more later)

L1 seed	HLT path	Lumi $(cm^{-2} s^{-1})$
L1_SingleTauJet52 OR L1_SingleJet68	HLT_lsoPFTau35_Trk20_MET45	1×10^{33}
L1_SingleTauJet52 OR L1_SingleJet68	HLT_lsoPFTau35_Trk20_MET60	2×10^{33}
L1_Jet52_Central_ETM30	HLT_lsoPFTau35_Trk20_MET60 [†]	2×10^{33}
L1_Jet52_Central_ETM30	HLT_MediumIsoPFTau35_Trk20_MET60 †	3×10^{33}

 $^{^{\}dagger}$ HF included in HLT $E_{\mathrm{T}}^{\mathrm{miss}}$ reconstruction

- IsoPFtau ≡ Tight isolation
- MediumIsoPFtau ≡ ECAL isolation dropped (affected by pile-up)

Trigger

Offline Selections

Summary of event selection requirements:

- Primary vertex selection
- **2** τ -jet identification:

•
$$p_{ extsf{T}} >$$
 40 GeV/ c , $|\eta| <$ 2.1, $p_{ extsf{T}}^{ extsf{Ldg. Trk.}} >$ 20 GeV/ c

- 1-prong decays
- Tight isolation

•
$$R_{ au} = rac{
ho^{ ext{Ldg. Trk.}}}{
ho^{ au} ext{ jet}} > 0.7 \ (au ext{ polarisation})$$

- **3** Isolated e^{\pm}/μ^{\pm} veto:
 - $p_{T} > 15 \,\text{GeV/}c$, $|\eta| < 2.5$
- $4 \ge 3$ PF jets:
 - $p_{T} > 30\,\mathrm{GeV}\!/c$, $|\eta| < 2.4$
- **5** PF $E_{\rm T}^{\rm miss} > 50 \,\mathrm{GeV}$
- $6 \geq 1$ b-tagged jets:
 - TCHE algorithm (high efficiency, low purity)
- $\phi \Delta \phi (\tau \text{ jet, } E_{\text{T}}^{\text{miss}}) < 160^{\circ}$
- **8** Reconstruct H^{\pm} transverse mass m_{T} (τ jet, E_{T}^{miss})

fully-hadronic final state

tion Event Reconstruction **Event Selection** Measurements Results Conclusions Bibliography Backup

0000 0000 000000

Cumulative signal selection efficiencies:

- $(0.9-2) \times 10^{-3}$ for WH; $(2-0.9) \times 10^{-3}$ for HH
- Trigger efficiency larger for *HH*:
 - Two τ-leptons in HH ⇒ double probability to pass trigger
 - τ -jet isolation tight \Rightarrow rare that 2 τ jets found (no veto)
- Sharp fall for HH at jet selection (b-jet phase-space)

Efficiencies

τ -part of trigger efficiency:

Trigger Efficiency

- Measured separately for 3 run periods
- From $Z^0/\gamma^* o au^\pm au^\mp$ events with Tag-and-Probe technique
 - ullet single isolated μ trigger used
 - One $\tau^{\pm} \rightarrow \mu^{\pm}$ (tag)
 - Other $\tau^{\pm} \rightarrow$ hadrons (probe)
 - Z⁰ mass constraint

Offline selections applied:

- Exactly 1 good muon
- ullet Exactly $oldsymbol{1}$ tightly isolated au jet
- $m_{
 m T}\left(\mu,\,E_{
 m T}^{
 m miss}
 ight) < 40\,{
 m GeV}/c^2$ (Reject W + jets)
- $m_{
 m vis}\left(\mu,\, au\,\,{
 m jet}
 ight)< 80\,{
 m GeV}/c^2\,\,{
 m (Reject}\,\,{
 m Z}^0/\gamma^* o\mu^\pm\mu^\mp)$

Trigger scale factors used for:

- signal samples
 - EWK+ $t\bar{t}$ fake au background measurement
 - Largest backgrounds measured from data (little MC reliance)

Overall L1+HLT efficiency:

•
$$\varepsilon_{\text{L1+HLT}} = \frac{N_{\text{probes}}^{\text{pass}}}{N_{\text{probes}}^{\text{pass}} + N_{\text{probes}}^{\text{fail}}}$$

- Plateau around $p_{\rm T}\sim 60\,{\rm GeV}/c$
- Data/MC ratio used as MC scale factor (in bins of τ jet p_T)
- Data weighted by luminosity
- Stat. uncertainty taken as trigger uncertainty (signal, EWK+ $t\bar{t}$ fake au)

Trigger Efficiency

E_{T}^{miss} - part of trigger efficiency:

- Measured using calo E_T^{miss} (\simeq HLT E_T^{miss})
- From single μ trigger data-sample

Offline selections applied:

- Signal-like topology
- Exactly 1~ au jet-like muon
- Veto on isolated e^{\pm}/μ^{\pm}
- \geq 3 jets (\geq 1b-jets)
- Data-MC within 10% (no scale factor)
- 10% systematic uncertainty added

After τ -jet ID, lepton veto, > 3 jets

- First 2 bins dominant
- Dominant bins within uncertainty

After τ -jet ID, lepton veto, \geq 3 jets

- Transitional region around 90 GeV
- Major backgrounds described well
- $E_{\rm T}^{\rm miss} > 50 \, {\rm GeV} \, {\rm suppresses} \, {\rm QCD}$

Data-driven plots

After τ -jet ID, lepton veto, ≥ 3 jets, E_{T}^{miss}

- Small excess for 1 b-tagged jet
- Good agreement overall

After all selections

- b-tagging excess carried over
- QCD "prefers" back-to-back
- Use as QCD-cleaning cut

After each selection step

- QCD multi-jet largely suppressed
- EWK+ $t\bar{t}$ τ largely irreducible
- EWK+ $t\bar{t}$ no- τ negligible

Event yield after all selections

Process	Events	Stat.	Syst.
$H^{\pm}H^{\mp}+H^{\pm}W^{\mp}$	51	±4	±8
QCD multi-jet	26	±2	± 1
EWK $+tar{t}$ genuine $ au$	78	± 3	± 11
$Z^0/\gamma^* ightarrow au^\pm au^\mp$	7.0	± 2.0	± 2.1
$W^{\pm}W^{\mp} \to \tau^{\pm} v_{\tau} \tau^{\mp} v_{\tau}$	0.35	± 0.23	± 0.09
EWK $+t\bar{t}$ fake $ au$	6.0	± 3.0	± 1.2
Expected from SM	119	±5	±12
Observed in data	130		

- $m_{H^{\pm}} = 120 \, \text{GeV} / c^2$
- BR($t \to bH^{\pm}$) = 0.05
- Event yields within uncertainty

Uncertainti

Source	$H^{\pm}H^{\mp}$	$W^{\mp}H^{\pm}$	QCD multi-jet	t EWK+ $t\bar{t}$ genuine τ			EWK $+t\bar{t}$ fake τ		
				Emb. data	$Z^0/\gamma^* \to \tau^\pm \tau^\mp$	$W^{\pm}W^{\mp} \to \tau^{\pm} \nu_{\tau} \tau^{\mp} \nu_{\tau}$	tī	tW	W+jets
single τ jet + E_T^{miss} trigger	12-13	13	-	11	12	11	12	11	14
τ -jet id (excl. R_{τ})	6.0	6.0	-	6.0	6.0	6.0	-	-	-
jet, $\ell ightarrow au$ mis-id	-	-	-	-	-	-	15	15	15
$JES+E_T^{miss}+R_T$	4.7-14	9.0-18	-	6.6	26	23	8.1	2.4	<10
isolated lepton veto	0.3-0.5	0.5-0.7	-	-	0.9	1.2	0.9	0.6	0.3
b-tagging	1.1-2.1	1.0-1.7	-	-	-	-	1.4	1.6	-
jet→b mis-id	-	-	-	-	2.0	2.6	-	-	4.8
QCD statistical	-	-	6.5	-	-	-	-	-	-
QCD systematic	-	-	3.8	-	-	=	-	-	-
EWK+ $t\bar{t}$ τ statistical	-	-	=.	3.4		-	-	-	-
$f_{\rm QCD}$	-	-	-	0.3		-	-	-	-
$f_{W^{\pm} \to \tau^{\pm} \nu_{\tau} \to \mu^{\pm} \nu_{\mu} \nu_{\tau} \nu_{\tau}}$	-	-	-	0.7	0.1	0.1	-	-	-
muon selections, $\epsilon_{\mathrm{sel}}^{\mu}$	-	-	=	0.5	0.1	0.1	-	-	-
pile-up	0.3-4.2	0.6-5.2	-	-	7.6	3.9	7.1	15	10
MC stat	6.2-11	7.0-10	-	-	29	66	28	49	71
cross-section	+7.0 -9.6	+7.0 -9.6	-	-	-	-	+7.0 -9.6	8.0	5.0
luminosity	2.2	2.2	=	-	2.2	2.2	2.2	2.2	2.2

- ullet EWK+ $tar{t}$ genuine au background is separable (largely irreducible)
- QCD multi-jet "sits" in signal region (reducible & controlled with $\Delta \phi$)
- EWK+ $t\bar{t}$ fake au is negligible
- Small excess around $80 < m_{
 m T} < 100\,{
 m GeV}/c^2$
- Remaining bins within uncertainty
- ullet $\Delta \phi < 160^\circ$ option chosen (measurable QCD, smaller uncertainties)
- Used in a CLs binned maximum likelihood ratio fit to extract limits

Limits obtained for mass range 80 GeV/ $c^2 \le m_{H^{\pm}} \le 160$ GeV/ c^2 :

- Modified frequentist method with profile likelihood ratio test-statistic
- Upper limits on BR($t \to bH^{\pm}$) assuming BR($H^{\pm} \to \tau^{\pm} \nu_{\tau}$) = 1:
 - expected: 1.5 5.2% (sensitivity)
 - observed: 2.2 7.3%
- ullet Excluded significant region in $(aneta, m_{H^\pm})$ plane of MSSM $m_{
 m h}^{
 m max}$ scenario

Exclusion Limits

Searched for light H^{\pm} in $t \rightarrow bH^{\pm}$ decays:

- $H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ and $\tau^{\pm} \rightarrow$ hadrons ν_{τ} decays
- Analysed 2.3 fb⁻¹ CMS-recorded data (Run 2011A)
- Major backgrounds measured from data
- \bullet $m_{\rm T}$ employed in CLs binned maximum likelihood ratio fit
- Upper limits $BR(t \rightarrow bH^{\pm})$
- Excluded significant region in $(\tan \beta, m_{H^{\pm}})$

Outlook for light H^{\pm} :

- Current analysis not entirely systematics-limited
- Re-commission bkg measurements & improve
- Clean further signal region
- Improve systematics (Trigger & JES better with full 2011)
- \bullet Aim for Moriond 2013 (2011 + 2012 data)

First results for heavy H^{\pm} ($H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$):

- ullet Final state identical to light H^\pm
- Main backgrounds the same
- Aim for Moriond 2013 (2011 + 2012 data)

October 9, 2012

- S. Chatrchyan et al., "Search for a light charged Higgs boson in top quark decays in pp collisions at √s = 7 TeV", Journal of High Energy Physics 2012 (2012) 1–38.
 10.1007/JHEP07(2012)143.
- [2] CMS Collaboration Collaboration, "Performance of tau-lepton reconstruction and identification in CMS", JINST 7 (2012) P01001, arXiv:1109.6034. doi:10.1088/1748-0221/7/01/P01001
- [3] CMS Collaboration, "CMS Commissioning of b-jet identification with pp collisions at $\sqrt{s}=7$ TeV", CMS PAS BTV-11-001 (2011).
- [4] S. Jadach, Z. Was, R. Decker et al., "The tau decay library TAUOLA: Version 2.4", Comput. Phys. Commun. 76 (1993) 361–380. doi:10.1016/0010-4655(93)90061-G.
- [5] R. Field, "Early LHC Underlying Event Data Findings and Surprises", arXiv:1010.3558.
- [6] M. E. Cabrera, J. A. Casas, and A. Delgado, "Upper Bounds on Superpartner Masses from Upper Bounds on the Higgs Boson Mass", *Phys. Rev. Lett.* 108 (Jan, 2012) 021802. doi:10.1103/PhysRevLett.108.021802.
- [7] S. Heinemeyer, O. Stal, and G. Weiglein, "Interpreting the LHC Higgs Search Results in the MSSM", Phys.Lett. B710 (2012) 201–206, arXiv:1112.3026. doi:10.1016/j.physletb.2012.02.084.

Bibliography

- Calo E_T^{miss} ≃ HLT E_T^{miss}

Backup

Establish that Calo $E_{T}^{\text{miss}} \simeq \text{HLT } E_{T}^{\text{miss}}$:

Calo E^{miss} ≃ HLT E^{miss}

- Select datasets using single τ jet trigger (τ -part of signal)
- Apply signal-like selection requirements:
 - ullet \geq 3 jets, \geq 1b-jets, isolated e/ μ veto
- Apply HLT E_{T}^{miss} (require events to pass single τ jet + E_{T}^{miss} trigger)
- Efficiencies measured as a function of uncorrected PF E_{T}^{miss}
- ullet Good agreement between calo and HLT E_{T}^{miss} objects (PF $E_{T}^{miss} > 50\, {
 m GeV}$)

At tree-level, Higgs-related parameters determined by:

• $tan \beta$ and m_{A^0}

At loop-level:

- Soft SUSY-breaking 3^{rd} generation squark mass M_{SUSY}
- Stop mixing parameter X_t

Can get $m_{h^0} \simeq 125\,\text{GeV}/c^2$ for all scenarios with some degree of mixing

Parameter	no-mixing m no-mix	maximal-mixing m _h ^{max}
<i>M</i> _{SUSY}	2 TeV	1 TeV
X_t	0	2M _{SUSY}
μ	+200 GeV	+200 GeV
$m_{ ilde{ ilde{g}}}$	1.6 TeV	0.8 <i>M</i> _{SUSY}
M_2	200 GeV	+200 GeV

Backup

Implications of SM Higgs with $m_{L0} = 125 \,\text{GeV/}c^2$

Interpreting the LHC Higgs Search Results in the MSSM [7]

 $R_{ au}$ Variable

$BR(\tau^{\pm} \rightarrow hadrons \nu_{\tau}) \sim 64\%$:

Process	$\Gamma_i/\Gamma_{\text{total}}(\%)$	$\sum_{i} \Gamma_{i} / \Gamma_{\text{total}} (\%)$
hadronic 1-prong (excl. K^{0} 's)	_	48.1
$ au^- ightarrow h^- u_ au$	11.6	_
$ au^- ightarrow ho^- u_ au ightarrow h^- \pi^0 u_ au$	26.0	_
$ au^- ightarrow lpha_1^- u_ au ightarrow h^- \pi^0 \pi^0 u_ au$	9.3	_
$ au ightarrow h^- v_ au + \geq 3\pi^0$	1.3	_
hadronic 3-prong (excl. K^{0} 's)	_	14.6

au helicity correlations:

- H^{\pm} scalar with $J_{H^{\pm}} = 0$ (W^{\pm} vector with $J_{W^{\pm}} = 1$)
- Neutrino (anti-neutrino) is left-handed (right-handed)
- au-lepton in $H^+ o au^+
 u_ au$ ($W^+ o au^+
 u_ au$) left-handed (right-handed)
- More energetic Ldg. Ch. particle in $H^+ o au^+
 u_ au$ decay

$$V_{\tau} \stackrel{\overrightarrow{p}_{\nu}}{\longmapsto} \stackrel{H^{+}}{\longrightarrow} \stackrel{\overrightarrow{p}_{\tau}}{\longleftarrow} \tau^{+}$$

$$\overline{V}_{\tau} \stackrel{\overrightarrow{p}_{\overline{V}}}{\longleftarrow} \stackrel{\tau^+}{\longrightarrow} \frac{\overrightarrow{p}_{\pi}}{\pi^+ \mid\mid \tau^+}$$

$$\begin{split} \frac{1}{\Gamma_{\pi}} \frac{d\Gamma_{\pi}}{d\cos\theta} &= \frac{1}{2} \left(1 + P_{\tau} \cos\theta \right) \\ \frac{1}{\Gamma_{\nu}} \frac{d\Gamma_{\nu, L}}{d\cos\theta} &= \frac{\frac{1}{2} m_{\tau}^2}{m_{\tau}^2 + 2 m_{\nu}^2} \left(1 + P_{\tau} \cos\theta \right) \\ \frac{1}{\Gamma_{\nu}} \frac{d\Gamma_{\nu, T}}{d\cos\theta} &= \frac{\frac{1}{2} m_{\nu}^2}{m_{\tau}^2 + 2 m_{\nu}^2} \left(1 - P_{\tau} \cos\theta \right) \end{split}$$

$$P_{ au}^{H^\pm}=+1$$
 , $P_{ au}^{W^\pm}=-1$

- θ is angle between π and τ -lepton (τ -lepton's rest frame)
- ullet L-polarisation states: Harder au jets in H^\pm decays
- ullet T-polarisation states: Harder au jets in W^\pm decays (dilution of effect)

Define
$$R_{\tau} = \frac{p^{\text{Ldg. Trk.}}}{p^{\tau \text{ jet}}}$$
:

- ullet $R_ au\gtrsim0.8$ and $R_ au\lesssim0.2$ retain $\sim50\%$ of the ho_L^\pm and π^\pm , but little of ho_T^\pm
- \Rightarrow Enhance $H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ decays