Search for H^{±±} and H[±] to other states than τ_{had} + ν in ATLAS

Catrin Bernius

Louisiana Tech University

On behalf of the ATLAS Collaboration

cH*arged 2012 4th International Workshop on Prospects for Charged Higgs Discovery at Colliders

Uppsala University, Sweden 8-11 October 2012

Outline

- Introduction
- Charged Higgs analyses

•
$$H^{\pm} \rightarrow \tau_{lep} + lepton$$

•
$$H^{\pm} \rightarrow \tau_{lep} + jets$$

•
$$H^{\pm} \rightarrow c\bar{s}$$

- Doubly charged Higgs
 - Search for anomalous production of prompt like-sign muon pairs

H[±] analyses

Introduction (1): Theory

Standard Model:

- Standard Model (SM) very successful theory in describing fundamental particles and their interactions
- Important to understand mechanism by which electroweak symmetry breaking (EWSB) occurs
- In SM: single complex scalar doublet field
 - → massive electroweak gauge bosons and a scalar particle (Higgs boson)
- This year discovery of "SM-Higgs-like" boson by ATLAS and CMS

Beyond the Standard Model:

- many models propose extension of Higgs sector to explain EWSB
- simple model: Two Higgs-doublet model (2HDM)
 - 5 physical Higgs boson states: 3 neutral, 2 charged
 - discovery of charged Higgs → definite signal of new physics beyond SM

Introduction (2): MSSM

Minimal Supersymmetric Standard Model (MSSM)

- employs type-II 2HDM
- one doublet couples to up-type fermions, other one to down-type fermions
- at tree level, MSSM Higgs sector is determined by only two independent parameters, usually chosen to be:
 - mass of H⁺: m_{H+}
 - ratio of the two Higgs doublet vacuum expectation values: tan β

Decay of charged Higgs boson:

- light H⁺ (m_{H+}<m_t) decays primarily to $c\bar{s}$ and τ^+v depending on tan β and m_{H+}
- heavy H⁺ (m_{H+}>m_t) decays primarily to τ⁺v and t̄
 - not discussed in this talk

Light charged Higgs boson:

- for tan β < 1: H⁺ \rightarrow c \bar{s} dominates with BR (H⁺ \rightarrow c \bar{s}) of ~20-40% for m_{H+} ~ 100GeV
- for tan $\beta > 2$: H⁺ $\rightarrow \tau$ ⁺v channel dominates with > 90%
 - also remains sizeable for $1 < \tan \beta < 2$

$H^{\pm} \rightarrow \tau \nu$ channels

Complex final state:

- reconstruction of final state challenging with τ lepton, missing energy from v_{τ} , 2 b-jets and lepton + v_{ℓ} or jets depending on W decay
- decay channels are classified by decays of τ lepton and W boson

tt → bb WH+	τ decays to e or μ	τ decays hadronically
W decays leptonically: f = e/μ	τ _{lep} + lepton	τ _{had} + lepton
W decays hadronically (into two jets): $f = q$	τ _{lep} + jets	T _{had} + jets

H[±] → Tv channels

H[±] → τ_{lep}v + lepton analysis

ATLAS-CONF-2011-151

Event Selection

Charged Higgs boson search in dilepton channel with integrated luminosity of 1.03 fb⁻¹ and √s = 7 TeV

- Cut-based selection
 - two oppositely charged leptons, one matched to the single lepton trigger (electron threshold 20 GeV, muon threshold 18 GeV)
 - at least two jets, including two b-tagged jets
 - for ee and μμ events:
 - m_{ℓℓ} > 15 GeV
 - |m_{ℓℓ}-m_Z| > 10 GeV (Z veto)
 - E_T^{miss} > 40 GeV
 - for eµ events: scalar ∑ of the transverse energies of the two leptons and all selected jets must satisfy ∑E_T > 130 GeV
- Four-fold ambiguity in assigning leptons and b-jets to parents
 - First: select events where two ℓ -b combinations with cos $\Theta_{\ell}^* < 1$ and which minimise $\Delta R(\ell,b)_{pair1} + \Delta R(\ell,b)_{pair2}$
 - efficiency in simulated tt events is 66%
 - then assign particles of the ℓ -b pair with smallest cos Θ_{ℓ}^* value to the "H+ side" and the particles of the other pair to the "W side"
 - efficiency of 62% in simulated events with m_{H+} = 130 GeV

Discriminating Variables

Identification of discriminating variables allowing a distinction between leptons produced in $\tau \to \ell \nu_\ell \nu_\tau$ decays and leptons from W boson decays

• invariant mass $m_{b\ell}$ of b-quark and lepton ℓ from the same top quark \rightarrow expressed as

$$\cos \theta_l^* = \frac{2m_{bl}^2}{m_{\text{top}}^2 - m_W^2} - 1 \simeq \frac{4p^b \cdot p^l}{m_{\text{top}}^2 - m_W^2} - 1$$

 $\cos\Theta_\ell^* \sim -1$ for H⁺ side: minimised due to smaller momentum of b-quark (if m_{H+} >m_W) and smaller momentum of ℓ from τ

signal region:

 $\cos \Theta_{\ell}^* < -0.6$

ightarrow for events on the "H+ side" in the signal region the generalised transverse mass m^H_{T2} is used as discriminating variable to search for H+

 generalised transverse mass: maximised charged Higgs boson mass of kinematic system

$$m_{\mathrm{T2}}^{H} = \max_{\{constraints\}} \left[m_{\mathrm{T}}^{H} (\vec{p_{\mathrm{T}}}^{H^{+}}) \right]$$

Neither an excess of events nor a significant deformation of mass distribution is observed

Results

Data agree well with SM expectation, assuming BR(H⁺→τν) = 1

→ upper limits on BR(t→bH+) as a function of the charged Higgs boson mass

m_{H^+} (GeV)	90	100	110	120	130	140	150	160
95% C.L. observed (expected) limit on	20.0%	19.2%	20.7%	32.0%	18.8%	24.2%	22.7%	47.3%
$\mathcal{B}(t \to bH^+)$ for the dilepton channel	(24.7%)	(22.6%)	(22.4%)	(26.9%)	(19.8%)	(22.6%)	(19.0%)	(43.7%)

Expected and observed 95% CL exclusion limits on BR(t \rightarrow bH⁺) for charged Higgs production from top quark decays as a function of m_{H+}, assuming BR(H⁺ \rightarrow τ v) = 1

including all systematic uncertainties (luminosity, trigger, reconstruction and identification efficiencies, energy/momentum resolution, MC generation uncertainties, uncertainties from fake lepton identification, etc.)

H[±] → τ_{lep}v + jets analysis

JHEP 1206 (2012) 039

$H^{\pm} \rightarrow \tau_{lep} \nu + jets$

Assumptions made in the following analysis:

- \bullet model-independent search of 90 GeV < $m_{H\scriptscriptstyle+}$ < 160 GeV
- assumed BR($H^+ \rightarrow \tau \nu$) = 1 (unless stated otherwise)

Analysis carried out with an integrated luminosity of 4.6 fb⁻¹ at $\sqrt{s} = 7$ TeV

- Cut-based selection:
 - single lepton trigger
 - exactly 1 isolated e/μ, veto events with τ_{had}
 - ≥ 4 jets, exactly 2 of them are b-jets
 - Missing Energy: discriminate between E_T^{miss} from isolated neutrinos and poorly reconstructed leptons
- Reconstruction of hadronic top:
 - events minimising the χ^2 function, discard events with $\chi^2 > 5$ $\chi^2 = \frac{(m_{jjb} m_{top})^2}{\sigma_{top}^2} + \frac{(m_{jj} m_W)^2}{\sigma_W^2},$ ($\sigma_{top} = 17$ GeV, $\sigma_{top} = 10$ GeV)
- Non-negligible background contribution from nonisolated leptons:
 - data-driven background estimation

H⁺ → τ_{lep}ν + jets: Discriminating Variables

- Reconstruction of discriminating variables after selection cuts:
 - Invariant mass m_{bℓ} of b-jet and charged lepton ℓ:

$$\cos \theta_l^* = \frac{2m_{bl}^2}{m_{\mathrm{top}}^2 - m_W^2} - 1 \simeq \frac{4 p^b \cdot p^l}{m_{\mathrm{top}}^2 - m_W^2} - 1.$$

Higgs transverse mass

$$(m_{
m T}^H)^2 = \left(\sqrt{m_{
m top}^2 + ({ec p_{
m T}}^l + {ec p_{
m T}}^b + {ec p_{
m T}}^{
m miss})^2} - p_{
m T}^b
ight)^2 - \left({ec p_{
m T}}^l + {ec p_{
m T}}^{
m miss}
ight)^2$$

• cosΘ_ℓ* < -0.6

• m_TW < 60 GeV with: $m_{\rm T}^W = \sqrt{2p_{\rm T}^l E_{\rm T}^{\rm miss}} (1-\cos\Delta\phi_{l,{\rm miss}})$ (suppress background from events where W decays directly to electron/muon)

Systematic Uncertainties

Systematic uncertainties arising from

- generation of tt events
- data-driven background estimates

with main uncertainty arising from simulated sample used for subtraction of true leptons in the determination of misidentification probabilities

Source of uncertainty	Normalisation uncertainty
lepton+jets:	
Generator and parton shower $(b\bar{b}WH^+, \text{ signal region})$	10%
Generator and parton shower $(b\bar{b}W^+W^-, \text{ signal region})$	8%
Generator and parton shower $(b\bar{b}WH^+, \text{ control region})$	7%
Generator and parton shower $(b\bar{b}W^+W^-, \text{ control region})$	6%
Initial and final state radiation (signal region)	8%
Initial and final state radiation (control region)	13%

Source of uncertainty	Normalisation uncertainty
lepton+jets: lepton misidentification	
Choice of control region	6%
Z mass window	4%
Jet energy scale	16%
Jet energy resolution	7%
Sample composition	31%

$H^+ \rightarrow \tau_{lep} \nu + jets : Results$

Expected and observed 95% CL exclusion limits on BR(t \rightarrow bH⁺) for charged Higgs production from top quark decays as a function of m_{H+}, assuming BR(H⁺ \rightarrow τ v) = 1

Combination of results from the 3
different channels τ_{lep} + jets, τ_{had} +
lepton, τ_{had} + jets

→ see Patrick's talk for more details!

95% CL exclusion limits on tan β as a function m_{H^+} , shown in the context of the MSSM scenario m_h^{max} for the region $1 < \tan \beta < 60$ in which reliable theoretical predictions exist, relaxing the assumption of BR(H⁺ \rightarrow τ v) = 1

H⁺ → τ_{lep}ν + jets : Summary

- ATLAS collaboration has performed a model-independent search for a charged Higgs bosons in decays of pair-produced top quarks using 4.6 fb⁻¹ with √s = 7 TeV
- BR(H⁺ → τv) = 1 is assumed and 3 different final states were considered
 - Results have been presented in one of the three channels: H⁺ → τ_{lep}v + jets
- In the absence of excess of events from SM expectations, combined 95%
 C.L. upper limits are set on BR(t → bH+): 5% (1%) for m(H+) = 90 (160) GeV
 - Improvement over upper limits from Tevatron (15-20%)
 - arXiv:0907.1269 (CDF), arXiv:0908.1811 (D0)

H[±] → cs̄ analysis

ATLAS-CONF-2011-094

H±→cs̄: Analysis Overview

Dominant decay mode at low tan β is H⁺ \rightarrow c \bar{s} \rightarrow complementary to H⁺ \rightarrow τ v

Cut-based event selection of semileptonic tt events

→ ensure that final state objects are present

→ reduction of width of W and H⁺ mass distribution

Data Interpretation:

→ discovery or 95% CL Limits

 $\sqrt{s} = 7 \text{ TeV},$ integrated luminosity of 35 pb⁻¹

H+→cs: Backgrounds & Event Selection

- Dominant background: tf events (~90%)
 - with one W decaying leptonically and the other W into light quarks (MC estimation)
- Non-ft backgrounds (~10%)
 - single top quark events (MC estimation)
 - W/Z+light/heavy-jets (MC estimation)
 - QCD multi-jet events (data driven methods: matrix method for muon+jets channel, binned likelihood template fit for electron+jets channel)
- Cut-based selection of semi-leptonic ft events
 - single lepton trigger
 - exactly 1 lepton matching the trigger object
 - at least 4 jets (W+jet background reduction)
 - at least one jet identified as b-jet via secondary vertex algorithm
 - Suppression of QCD multi-jet events:
 - E_T^{miss} > 20 (35) GeV for muon (electron) channel
 - $M_T(W) > 25$ GeV for electron channel $E_T^{miss} + M_T(W) > 60$ GeV for muon channel

$$M_T(W) = \sqrt{2 * p_T^{lepton} * p_T^{\nu} * (1 - \cos \Delta \phi)}$$

H[±]→cs̄: Kinematic Fit

- To reconstruct the mass of H⁺ candidates, the two jets from H⁺ need to be identified
 - kinematic fitter used to identify and reconstruct mass of di-jets from W/H+ candidates
 - → full reconstruction of tt event
 - requires correct assignment of jets from top quark decays to the four original partons
 - constrain W and top quark masses to their PDG values, with floating jet/lepton energy within their measured resolutions
 - best combination found by minimising χ^2 for each assignment of jets to quarks
 - remove poorly reconstructed ft events with $\chi^2 > 20$
 - selection efficiency of 82% for tt events
- → reduction of the width and tails of the di-jet mass distribution
- → good discrimination between the mass peaks of the W boson from SM decays and H⁺ boson

- Systematic Uncertainties:
 - table shows effect of systematic uncertainties on expected number of tt background and signal events
- Number of observed events in data after selection agrees well with expectation from SM backgrounds
 - good agreement of data and SM expectation in di-jet mass distribution
 - \rightarrow extraction of upper limits on BR(t \rightarrow H+b) as function of charged Higgs mass

Systematic Source	
Jet energy scale	+11, -13% (SM tt)
	+9, -12% (signal)
b-Jet energy scale	±0.5%
Jet energy resolution	±1%
b-tagging efficiency	+4, -9%
MC generator	±4%
Parton shower	±3%
ISR/FSR	±1%
Additional Interactions	±4%
Luminosity	±3.4%
Electron reconstruction	±1.6%
Muon reconstruction	±0.2%
Electron trigger	±0.2%
Muon trigger	±0.5%
tt cross section	+7, -9%
t quark mass	±7%

Channel	Muon	Electron
Data	193	130
SM $t\bar{t} \rightarrow W^+bW^-\bar{b}$	156 +24	106+16
W/Z + jets	17±6	9±3
Single top	7±1	5±1
Diboson	0.30±0.02	0.20±0.02
QCD multijet	11±4	6±3
Total Expected (SM)	191 +26	127 +17 -21

H[±]→cs̄: Limits

- Expected and observed 95% CL limits on the BR(t→H+b)
 - limits calculated using CL_s limit setting procedure

Higgs Mass	Expected limit	Observed limit
90 GeV	0.30	0.25
110 GeV	0.18	0.15
130 GeV	0.17	0.14

- Extracted 95% CL upper limits on BR(t→H+b)
 - compared with expected results
 - compared with results from Tevatron
 - assuming BR(H⁺→cs̄) = 1

H[±] → cs̄: Summary

- Presented search of charged Higgs boson decaying via cs and produced via decay of top quarks
- Results are consistent with null Higgs hypothesis
 - di-jet mass distribution in good agreement with expectation from SM
- Limits are within one standard deviation of the expected limits and range from BR = 0.25 to 0.14 for m_{H+} = 90 to 130 GeV
 - assuming BR(H⁺→cs̄) = 1
- First limits on charged Higgs boson in this channel from LHC

$H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$ search

Phys. Rev. D 85, 032004 (2012)

Introduction

- Search for anomalous production of prompt like-sign muon pairs
 - events with two high-p_T, prompt, like-sign leptons are rare in SM
 - but occur with enhanced rate in several models of new physics:
 - supersymmetry
 - universal extra dimensions
 - left-right symmetric models
 - Higgs triplet models etc.
 - most of these models would result in an excess of like-sign di-muons over the background but no kinematic features
 - BUT: doubly charged Higgs bosons (H^{±±}) would be observed as a narrow resonance in the dimuon mass spectrum

In the following presented analysis:

- events containing like-sign muon pairs are selected
- invariant di-muon mass distribution is compared to the SM prediction
- search for a narrow di-muon resonance is also carried out
- constraints on the H^{±±} mass as a function of its BR to muons are placed

Event Selection & Backgrounds

- Using data sample corresponding to 1.6 fb⁻¹ recorded at $\sqrt{s} = 7$ TeV
- Event selection:
 - Single muon triggers with p_T thresholds of
 - $p_T > 18 \text{ GeV for muon}$
 - at least 2 muons with same charge
 - allow multiple pairs per event
 - m_{μμ} > 15 GeV to exclude low-mass resonances (e.g. J/Psi, Upsilon mesons)

• Backgrounds:

- prompt like-sign di-muons processes
 - WZ, ZZ, like-sign WW, also tfW
 - expected contribution is derived from MC simulation normalised to cross-section calculations performed at NLO
- background caused by muons from hadronic decays
 - primarily from semi-leptonic b- and c-hadron decays
 - data-driven background estimation using matrix method
- background from processes with two prompt opposite sign muons
 - due to charge misidentification of one of the muons
 - processes include Drell-Yan, tf, WW production
 - background derived from MC simulation → negligible in relevant mass range

Data & Background Comparison

- Invariant mass distributions
 - data agree with background within systematic uncertainties (mainly MC cross-section, PDFs and uncertainty on measurement of the fraction of non-prompt muons passing isolation cuts)
 - no excess observed

Limits

Limit on cross-section times branching ratio

- derived from limit on number of muon pairs with invariant mass within 10% of considered H±± mass
- \rightarrow 95% expected and observed upper limits on σ x BR as function of H±± mass

also shown: exclusion region at 95% CL of the H±± mass as a function of the BR to muon pairs for left- and right-handed H±± bosons

M(H^{±±}_o) [GeV]

Summary

- Inclusive search for production of pairs of prompt like-sign muons presented
 - integrated luminosity of 1.6 fb⁻¹
- Data agree with background expectation
 - no sign of new physics has been found
- Constraints are placed on doubly charged Higgs boson production
 - lower mass limit with a 100% (33%) branching ratio to muons is
 - 355 (244) GeV for H^{±±} bosons coupling to left-handed fermions
 - 251 (209) GeV for H±± bosons coupling to right-handed fermions