Data-driven background estimation in CMS #### Matti Kortelainen Helsinki Institute of Physics on behalf of the CMS collaboration 4th International Workshop on Prospects for Charged Higgs Discovery at Colliders, Uppsala October 9, 2012 #### Introduction - The CMS analyses consider the following backgrounds - JHEP07(2012)143 (arXiv:1205.5736) - τ_h+jets final state (Alexandros' talk) - QCD multijet events (jet misidentified as τ_h) - EWK+ $t\bar{t}$ events with genuine τ lepton identified as τ_h - EWK+ $t\bar{t}$ events with e/ μ /jet misidentified as τ_h - $e+\tau_h$ and $\mu+\tau_h$ final states (Pietro's talk) - Jet misidentified as τ_h (W + jets, $t\bar{t}$) - $-Z/\gamma^* \rightarrow \tau\tau$, single top, diboson, and $t\bar{t}$ with genuine τ - $-Z/\gamma^* \rightarrow ee, \mu\mu$, and $t\bar{t}$ with e/μ misidentified as τ_h - e+μ final state (Pietro's talk) - $t\bar{t}$, $Z/\gamma^* \rightarrow \ell\ell$, W + jets, single top, and diboson events - Backgrounds with blue are measured from data, and are the topic of this talk - The remaining backgrounds are estimated using simulation ### Reminder: τ_h +jets final state analysis - 1. $\tau + E_{T}^{miss}$ trigger - 2. Tight τ_h identification, $p_T > 40 \text{ GeV}/c$ - Tau polarization $R_{\tau} > 0.7$ - 3. Isolated e/ μ veto, $p_T > 15 \text{ GeV}/c$ - 4. ≥ 3 hadronic jets p_T > 30 GeV/c - 5. Missing $E_T > 50$ GeV - 6. > 1 jet b-tagged - $7. \Delta \phi(\tau_h, E_T^{miss}) < 160^\circ$ - 8. Shape analysis with transverse mass $m_T(\tau_h, E_T^{\text{miss}})$ ### QCD multijet background measurement #### Number of events - Background from QCD multijet events, where a jet is misidentified as the τ_h and no genuine source of E_T^{miss} - ullet Shape and normalization of m_T distribution were measured separately - Factorized in bins of τ_h candidate p_T , because - probability for a quark or a gluon jet to pass isolation and R_{τ} requirements depends on the jet p_{T} - small correlation between E_{T}^{miss} selection and τ_{h} identification is reduced to negligible level - Selected event samples are dominated by QCD multijet events - But contain also impurity from FWK and tt events - Amount of them estimated using simulation, and subtracted from data #### Basic selections: - 1. τ plus $E_{\rm T}^{\rm miss}$ trigger - 2. Good primary vertex - 3. τ -jet candidate selection - 4. Veto on isolated electrons and muons - 5. \geq 3 jets QCD fraction 97–99% QCD fraction 60-80% $N_{\text{presel}, i}$ 7. $R_{\tau} > 0.7$ II. ≥ 1 b-tagged jet III. $\Delta \phi(\tau \text{ jet, } E_{\text{T}}^{\text{miss}})$ requirement QCD fraction $\varepsilon_{E_{\tau}^{\text{miss}} + \text{btaq} + \Delta\phi, i}$ 84–94% τ-jet candidate p_T bins $N^{\text{QCD}} = \sum_{i} \left(N_{\text{presel}, i}^{\text{data}} - N_{\text{presel}, i}^{\text{EWK sim}} \right)$ ### QCD multijet background #### Uncertainties and results - Dominant uncertainty is the amount of data (6.5%) - Systematic uncertainty due to subtraction of EWK+tt events was accounted for by - assuming 20% uncertainty on EWK+tt simulation, and - propagating this uncertainty using error propagation - QCD multijet event yields for three $\Delta \phi$ selection options: | $\Delta\phi(\tau \text{ jet, } E_{\mathrm{T}}^{\mathrm{miss}})$ option | $\mathcal{N}^{ ext{QCD}}$ | |--|--| | Without $\Delta \phi$ selection | 42 ± 3 (stat.) ± 2 (syst.) | | $\Delta \phi < 160^{\circ}$ | 26 ± 2 (stat.) ± 1 (syst.) | | $\Delta \phi < 130^\circ$ | 17.0 ± 1.2 (stat.) ± 0.6 (syst.) | # QCD multijet background Shape of m_T distribution - Obtain $m_{\rm T}$ distributions after $E_{\rm T}^{\rm miss}$ and $\Delta\phi$ requirements in bins of $\tau_{\rm h}$ $p_{\rm T}$ - B tagging has negligible effect on the shape ⇒ leave out - Weight distributions by ε_{τ -jet ID, i - Add up all m_T distributions Number of events in m_T bin j, before normalization to N^{QCD} • Summed m_T distribution normalized to \mathcal{N}^{QCD} (from previous slide) - 1. τ plus $E_{\rm T}^{\rm miss}$ trigger - 2. Good primary vertex - 3. τ -jet candidate selection - 4. Veto on isolated electrons and muons - 5. \geq 3 jets # QCD multijet background #### Shape of m_T distribution: result - With and without b tagging - Distribution shapes agree well - ⇒ leaving b tagging out from shape extraction is justified - Two "bumps" - $-\tau_h$ energy underestimated/overestimated - $-m_{\rm T}\sim 0~{ m GeV}/c$: $au_{ m h}$ and $ec{E}_{ m T}^{ m miss}$ are collinear - $-m_{\rm T}\sim 120~{\rm GeV}/c$ (signal region): $\tau_{\rm h}$ and $\vec{E}_{\rm T}^{\rm miss}$ are back-to-back - * Can be controlled with $\Delta \phi(\tau \text{ jet, } E_{T}^{\text{miss}})$ requirement # EWK+tt̄ genuine τ background - Background from SM $t\bar{t}$, W + jets, Z/ γ^* , single top, VV events with a genuine τ lepton - Basic idea is to exploit lepton universality $\mathcal{B}(W \to \mu) = \mathcal{B}(W \to \tau)$ - Control sample: $\mu + \ge 3$ jets - Tau embedding done at particle flow level - Tau decay simulated and reconstructed, with tau lepton having same momentum as muon - Tau polarization assuming $W \rightarrow \tau \nu$ decay - Apply remaining event selections - Normalization - τ trigger efficiency - Muon trigger and ID efficiency - − Correct for $W \rightarrow \tau \rightarrow \mu$ events - Increase statistical precision by repeating embedding 10 times - Small residual background from ditau events - Veto of 2nd μ is tighter than veto of 2nd τ_h - Estimated from simulation # EWK+tī genuine τ background #### Control sample selection - Selection - Single muon trigger - Require muon with $p_T > 40 \text{ GeV}/c$, $|\eta| < 2.1$ - * Isolation similar to taus, but looser - Isolated e/other μ veto - Require at least three jets with $p_T > 30 \text{ GeV}/c$, $|\eta| < 2.4$ - Reasonable agreement between data and simulation - Contamination from QCD multijet events $\sim 6\%$ - After embedding, τ_h isolation and E_T^{miss} requirement suppress QCD multijet contribution to negligible level Selected muon p_T distribution # EWK+tī genuine τ background #### Validation and uncertainties - Measurement method was extensively validated by comparing for each selection step - Embedded simulation and normal simulation, both without and with accounting for τ plus $E_{\rm T}^{\rm miss}$ trigger - Embedded data and embedded simulation - Both embedded data and embedded simulation plus residual ditau background, and normal simulation - Dominant uncertainties - $-\tau$ plus $E_{\rm T}^{\rm miss}$ trigger (11%) - τ_h energy scale (6.6%) - τ_h identification (6%) - Statistical uncertainty (3.4%) # EWK+tī genuine τ background #### Results - Embedded data vs. embedded simulation agree well - Embedded simulation + residual simulation agree reasonably well with normal simulation - Result: data: 78 ± 3 (stat.) ± 11 (syst.), residual ditau from simulation: 7 ± 2 (stat.) ± 2 (syst.) # Reminder: $e+\tau_h$ and $\mu + \tau_h$ final state analyses - 1. e + 2 jets + MHT trigger Single µ trigger - 2. Isolated e with $p_T > 35$ GeV/c, $\eta < 2.5$ Isolated μ with $p_T > 30 \text{ GeV}/c$, $|\eta| < 2.1$ - $3. \ge 2$ hadronic jets $p_T > 35(e)$, $30(\mu)$ GeV/c - 4. Missing $E_T > 45(e)$, $40(\mu)$ GeV - $5. \geq 1$ jet b-tagged - 6. $\tau_h p_T > 20 \text{ GeV}/c$ - 7. Opposite-sign (OS) between e/μ and τ_h - 8. Counting experiment E_Tmiss ### Misidentified τ_h background measurement #### Misidentification rate - ullet Background from jets misidentified as au_h - First measure "jet $\rightarrow \tau$ probability" - From $W+ \ge 1$ jet events - One isolated μ with $p_T > 20$ GeV/c, $|\eta| < 2.1$ - ≥ 1 jet with $p_T > 20$ GeV/c, $|\eta| < 2.4$ - $m_{\rm T}(\mu, E_{\rm T}^{\rm miss}) > 50 {\rm GeV}/c^2$ - From QCD multijet events - Single jet trigger ($p_T > 30 \text{ GeV/}c$) - ≥ 2 jets with $p_T > 20$ GeV/c, $|\eta| < 2.4$ - All jets except triggering jet used for misidentification rate - \star Except if two jets fire the trigger \Rightarrow all jets used - "Jet \rightarrow τ probability" parameterized as a function of the jet $p_{\rm T}$, η , and radius $(R=\sqrt{\sigma_{\eta\eta}^2+\sigma_{\phi\phi}^2})$ Using k-Nearest Neighbour (kNN) regression Jet p₊ (GeV/c) ### Misidentified τ_h background measurement #### **Background** estimation - Select " $\ell + \geq 3$ jet" events - 1 isolated $e/\mu + E_T^{miss} + \ge 3$ jets $+ \ge 1$ b-tagged jets - Thresholds same as in signal selection - Dominated by W + jets and $t\bar{t} \rightarrow \ell$ + jets events - Apply to every jet the "jet $\rightarrow \tau$ probability" - ullet Subtract a small contribution of genuine τ events selected by the requirements above - Quark and gluon jet composition lies between QCD multijet and $W+\geq 1$ jet events - Take the average of estimates from QCD multijet and $W+ \ge 1$ jet misidentification rates - Multiply with the efficiency of the opposite-sign requirement (ε_{OS}) - Estimated with simulation, cross-checked with data - Validated by applying the data-driven method to simulation and comparing with expectation from simulation using generator information ### Misidentified τ_h background measurement #### Results and uncertainties | e- | ⊦τ _h | tinal | l sta | te | |----|-----------------|-------|-------|----| | | | | | | | Sample | MC expectation | Estimated from MC | Estimated from data | Residual from MC | |--------------|----------------|-------------------|---------------------|------------------| | QCD multijet | | 54.9 | 64.1 | 19.6 | | W + jets | 57.9 ± 5.1 | 78.9 | 86.7 | 27.4 | | Average | | 66.9 ± 12.0 | 75.4 ± 11.3 | 23.5 ± 3.9 | #### $\mu + \tau_h$ final state: | Sample | MC expectation | Estimated from MC | Estimated from data | Residual from MC | |--------------|-----------------|-------------------|---------------------|------------------| | QCD multijet | | 105.1 | 113.0 | 34.4 | | W + jets | 120.1 ± 8.1 | 147.3 | 144.5 | 44.3 | | Average | | 126.2 ± 21.1 | 128.8 ± 15.8 | 39.4 ± 4.9 | | | Ť | Ť | | Ť | Closure test within uncertainty - ullet Final result after multiplication with $arepsilon_{ ext{OS}}$ - $e + \tau_h$: 54 ± 6 (stat.) ± 8 (syst.) - $\mu + \tau_h$: 89 ± 9 (stat.) ± 11 (syst.) - Uncertainties - Difference in τ_h misidentification rates for quark and gluon jets (12%) - \star Use of jet radius decreased the uncertainty from $\sim 25\,\%$ - Number of events for OS efficiency estimate (10%) Contribution from genuine τ 's estimated from simulation Already subtracted from the other numbers #### Summary - QCD multijet background for τ_h +jets final state - Normalization and shape of m_T distribution measured separately - Factorization of τ_h ID and E_T^{miss} +b-tag+ $\Delta \phi(\tau \text{ jet}, E_T^{miss})$ selections - Dominant uncertainties were number of data events, and uncertainties on simulation due to subtraction of $EWK+t\bar{t}$ events - EWK+ $t\bar{t}$ genuine τ background for τ_h +jets final state - $-\mu + \ge 3$ jets events and tau embedding method - Normalization: correct for various efficiencies - Dominant uncertainties were τ plus E_T^{miss} trigger effiency, τ_h energy scale, and τ_h identification - Misidentified τ_h for $e+\tau_h$ and $\mu+\tau_h$ final states - e/μ +≥ 3 jets events and jet \rightarrow τ_h misidentification rate - Dominant uncertainties were different τ_h misidentification rates for quark and gluon jets, and statistics for OS efficiency estimate