



### Data-driven background estimation in CMS

#### Matti Kortelainen

Helsinki Institute of Physics

on behalf of the CMS collaboration

4th International Workshop on Prospects for Charged Higgs Discovery at Colliders, Uppsala

October 9, 2012



#### Introduction



- The CMS analyses consider the following backgrounds
  - JHEP07(2012)143 (arXiv:1205.5736)
- τ<sub>h</sub>+jets final state (Alexandros' talk)
  - QCD multijet events (jet misidentified as  $\tau_h$ )
  - EWK+ $t\bar{t}$  events with genuine  $\tau$  lepton identified as  $\tau_h$
  - EWK+ $t\bar{t}$  events with e/ $\mu$ /jet misidentified as  $\tau_h$
- $e+\tau_h$  and  $\mu+\tau_h$  final states (Pietro's talk)
  - Jet misidentified as  $\tau_h$  (W + jets,  $t\bar{t}$ )
  - $-Z/\gamma^* \rightarrow \tau\tau$ , single top, diboson, and  $t\bar{t}$  with genuine  $\tau$
  - $-Z/\gamma^* \rightarrow ee, \mu\mu$ , and  $t\bar{t}$  with  $e/\mu$  misidentified as  $\tau_h$
- e+μ final state (Pietro's talk)
  - $t\bar{t}$ ,  $Z/\gamma^* \rightarrow \ell\ell$ , W + jets, single top, and diboson events
- Backgrounds with blue are measured from data, and are the topic of this talk
  - The remaining backgrounds are estimated using simulation



### Reminder: $\tau_h$ +jets final state analysis





- 1.  $\tau + E_{T}^{miss}$  trigger
- 2. Tight  $\tau_h$  identification,  $p_T > 40 \text{ GeV}/c$ 
  - Tau polarization  $R_{\tau} > 0.7$
- 3. Isolated e/ $\mu$  veto,  $p_T > 15 \text{ GeV}/c$
- 4. ≥ 3 hadronic jets  $p_T$  > 30 GeV/c
- 5. Missing  $E_T > 50$  GeV
- 6. > 1 jet b-tagged
- $7. \Delta \phi(\tau_h, E_T^{miss}) < 160^\circ$
- 8. Shape analysis with transverse mass  $m_T(\tau_h, E_T^{\text{miss}})$



### QCD multijet background measurement



#### Number of events

- Background from QCD multijet events, where a jet is misidentified as the  $\tau_h$  and no genuine source of  $E_T^{miss}$
- ullet Shape and normalization of  $m_T$  distribution were measured separately
- Factorized in bins of  $\tau_h$  candidate  $p_T$ , because
  - probability for a quark or a gluon jet to pass isolation and  $R_{\tau}$  requirements depends on the jet  $p_{T}$
  - small correlation between  $E_{T}^{miss}$  selection and  $\tau_{h}$  identification is reduced to negligible level
- Selected event samples are dominated by QCD multijet events
  - But contain also impurity from FWK and tt events
  - Amount of them estimated using simulation, and subtracted from data

#### Basic selections:

- 1.  $\tau$  plus  $E_{\rm T}^{\rm miss}$  trigger
- 2. Good primary vertex
- 3.  $\tau$ -jet candidate selection
- 4. Veto on isolated electrons and muons
- 5.  $\geq$  3 jets QCD fraction 97–99%

QCD fraction

60-80%



 $N_{\text{presel}, i}$ 

7.  $R_{\tau} > 0.7$ 



II.  $\geq 1$  b-tagged jet

III.  $\Delta \phi(\tau \text{ jet, } E_{\text{T}}^{\text{miss}})$  requirement

QCD fraction  $\varepsilon_{E_{\tau}^{\text{miss}} + \text{btaq} + \Delta\phi, i}$  84–94%

τ-jet candidate  $p_T$  bins

 $N^{\text{QCD}} = \sum_{i} \left( N_{\text{presel}, i}^{\text{data}} - N_{\text{presel}, i}^{\text{EWK sim}} \right)$ 



### QCD multijet background



#### Uncertainties and results

- Dominant uncertainty is the amount of data (6.5%)
- Systematic uncertainty due to subtraction of EWK+tt events was accounted for by
  - assuming 20% uncertainty on EWK+tt simulation, and
  - propagating this uncertainty using error propagation
- QCD multijet event yields for three  $\Delta \phi$  selection options:

| $\Delta\phi(\tau \text{ jet, } E_{\mathrm{T}}^{\mathrm{miss}})$ option | $\mathcal{N}^{	ext{QCD}}$                |
|------------------------------------------------------------------------|------------------------------------------|
| Without $\Delta \phi$ selection                                        | $42 \pm 3$ (stat.) $\pm 2$ (syst.)       |
| $\Delta \phi < 160^{\circ}$                                            | $26 \pm 2$ (stat.) $\pm 1$ (syst.)       |
| $\Delta \phi < 130^\circ$                                              | $17.0 \pm 1.2$ (stat.) $\pm 0.6$ (syst.) |



# QCD multijet background Shape of $m_T$ distribution



- Obtain  $m_{\rm T}$  distributions after  $E_{\rm T}^{\rm miss}$  and  $\Delta\phi$  requirements in bins of  $\tau_{\rm h}$   $p_{\rm T}$ 
  - B tagging has negligible effect on the shape ⇒ leave out
- Weight distributions by  $\varepsilon_{\tau$ -jet ID, i
- Add up all  $m_T$  distributions

Number of events in  $m_T$  bin j, before normalization to  $N^{QCD}$ 

• Summed  $m_T$  distribution normalized to  $\mathcal{N}^{\text{QCD}}$  (from previous slide)



- 1.  $\tau$  plus  $E_{\rm T}^{\rm miss}$  trigger
- 2. Good primary vertex
- 3.  $\tau$ -jet candidate selection
- 4. Veto on isolated electrons and muons
- 5.  $\geq$  3 jets





# QCD multijet background



#### Shape of $m_T$ distribution: result







- With and without b tagging
  - Distribution shapes agree well
  - ⇒ leaving b tagging out from shape extraction is justified
- Two "bumps"
  - $-\tau_h$  energy underestimated/overestimated
  - $-m_{\rm T}\sim 0~{
    m GeV}/c$ :  $au_{
    m h}$  and  $ec{E}_{
    m T}^{
    m miss}$  are collinear
  - $-m_{\rm T}\sim 120~{\rm GeV}/c$  (signal region):  $\tau_{\rm h}$  and  $\vec{E}_{\rm T}^{\rm miss}$  are back-to-back
    - \* Can be controlled with  $\Delta \phi(\tau \text{ jet, } E_{T}^{\text{miss}})$  requirement



# EWK+tt̄ genuine τ background



- Background from SM  $t\bar{t}$ , W + jets, Z/ $\gamma^*$ , single top, VV events with a genuine  $\tau$  lepton
- Basic idea is to exploit lepton universality  $\mathcal{B}(W \to \mu) = \mathcal{B}(W \to \tau)$
- Control sample:  $\mu + \ge 3$  jets
- Tau embedding done at particle flow level
  - Tau decay simulated and reconstructed, with tau lepton having same momentum as muon
  - Tau polarization assuming  $W \rightarrow \tau \nu$  decay
- Apply remaining event selections
- Normalization
  - τ trigger efficiency
  - Muon trigger and ID efficiency
  - − Correct for  $W \rightarrow \tau \rightarrow \mu$  events
- Increase statistical precision by repeating embedding 10 times
- Small residual background from ditau events
  - Veto of 2nd  $\mu$  is tighter than veto of 2nd  $\tau_h$
  - Estimated from simulation





# EWK+tī genuine τ background



#### Control sample selection

- Selection
  - Single muon trigger
  - Require muon with  $p_T > 40 \text{ GeV}/c$ ,  $|\eta| < 2.1$ 
    - \* Isolation similar to taus, but looser
  - Isolated e/other μ veto
  - Require at least three jets with  $p_T > 30 \text{ GeV}/c$ ,  $|\eta| < 2.4$
- Reasonable agreement between data and simulation
- Contamination from QCD multijet events  $\sim 6\%$ 
  - After embedding,  $\tau_h$  isolation and  $E_T^{miss}$  requirement suppress QCD multijet contribution to negligible level



Selected muon  $p_T$  distribution



# EWK+tī genuine τ background



#### Validation and uncertainties

- Measurement method was extensively validated by comparing for each selection step
  - Embedded simulation and normal simulation, both without and with accounting for  $\tau$  plus  $E_{\rm T}^{\rm miss}$  trigger
  - Embedded data and embedded simulation
  - Both embedded data and embedded simulation plus residual ditau background, and normal simulation
- Dominant uncertainties
  - $-\tau$  plus  $E_{\rm T}^{\rm miss}$  trigger (11%)
  - $\tau_h$  energy scale (6.6%)
  - τ<sub>h</sub> identification (6%)
  - Statistical uncertainty (3.4%)



# EWK+tī genuine τ background



#### Results



- Embedded data vs. embedded simulation agree well
- Embedded simulation + residual simulation agree reasonably well with normal simulation
- Result: data:  $78 \pm 3$  (stat.)  $\pm 11$  (syst.), residual ditau from simulation:  $7 \pm 2$  (stat.)  $\pm 2$  (syst.)



# Reminder: $e+\tau_h$ and $\mu + \tau_h$ final state analyses





- 1. e + 2 jets + MHT trigger Single µ trigger
- 2. Isolated e with  $p_T > 35$  GeV/c,  $\eta < 2.5$ Isolated  $\mu$  with  $p_T > 30 \text{ GeV}/c$ ,  $|\eta| < 2.1$
- $3. \ge 2$  hadronic jets  $p_T > 35(e)$ ,  $30(\mu)$  GeV/c
- 4. Missing  $E_T > 45(e)$ ,  $40(\mu)$  GeV
- $5. \geq 1$  jet b-tagged
- 6.  $\tau_h p_T > 20 \text{ GeV}/c$
- 7. Opposite-sign (OS) between  $e/\mu$  and  $\tau_h$
- 8. Counting experiment

E<sub>T</sub>miss



### Misidentified $\tau_h$ background measurement



#### Misidentification rate

- ullet Background from jets misidentified as  $au_h$
- First measure "jet  $\rightarrow \tau$  probability"
- From  $W+ \ge 1$  jet events
  - One isolated  $\mu$  with  $p_T > 20$  GeV/c,  $|\eta| < 2.1$
  - $\ge 1$  jet with  $p_T > 20$  GeV/c,  $|\eta| < 2.4$
  - $m_{\rm T}(\mu, E_{\rm T}^{\rm miss}) > 50 {\rm GeV}/c^2$
- From QCD multijet events
  - Single jet trigger ( $p_T > 30 \text{ GeV/}c$ )
  - $\ge 2$  jets with  $p_T > 20$  GeV/c,  $|\eta| < 2.4$
  - All jets except triggering jet used for misidentification rate
    - $\star$  Except if two jets fire the trigger  $\Rightarrow$  all jets used
- "Jet  $\rightarrow$   $\tau$  probability" parameterized as a function of the jet  $p_{\rm T}$ ,  $\eta$ , and radius  $(R=\sqrt{\sigma_{\eta\eta}^2+\sigma_{\phi\phi}^2})$

Using k-Nearest Neighbour (kNN) regression



Jet p<sub>+</sub> (GeV/c)



### Misidentified $\tau_h$ background measurement



#### **Background** estimation

- Select " $\ell + \geq 3$  jet" events
  - 1 isolated  $e/\mu + E_T^{miss} + \ge 3$  jets  $+ \ge 1$  b-tagged jets
  - Thresholds same as in signal selection
  - Dominated by W + jets and  $t\bar{t} \rightarrow \ell$  + jets events
- Apply to every jet the "jet  $\rightarrow \tau$  probability"
- ullet Subtract a small contribution of genuine  $\tau$  events selected by the requirements above
- Quark and gluon jet composition lies between QCD multijet and  $W+\geq 1$  jet events
  - Take the average of estimates from QCD multijet and  $W+ \ge 1$  jet misidentification rates
- Multiply with the efficiency of the opposite-sign requirement ( $\varepsilon_{OS}$ )
  - Estimated with simulation, cross-checked with data
- Validated by applying the data-driven method to simulation and comparing with expectation from simulation using generator information

### Misidentified $\tau_h$ background measurement



#### Results and uncertainties

| e- | ⊦τ <sub>h</sub> | tinal | l sta | te |
|----|-----------------|-------|-------|----|
|    |                 |       |       |    |

| Sample       | MC expectation | Estimated from MC | Estimated from data | Residual from MC |
|--------------|----------------|-------------------|---------------------|------------------|
| QCD multijet |                | 54.9              | 64.1                | 19.6             |
| W + jets     | $57.9 \pm 5.1$ | 78.9              | 86.7                | 27.4             |
| Average      |                | $66.9 \pm 12.0$   | 75.4 ± 11.3         | $23.5 \pm 3.9$   |

#### $\mu + \tau_h$ final state:

| Sample       | MC expectation  | Estimated from MC | Estimated from data | Residual from MC |
|--------------|-----------------|-------------------|---------------------|------------------|
| QCD multijet |                 | 105.1             | 113.0               | 34.4             |
| W + jets     | $120.1 \pm 8.1$ | 147.3             | 144.5               | 44.3             |
| Average      |                 | $126.2 \pm 21.1$  | $128.8 \pm 15.8$    | $39.4 \pm 4.9$   |
|              | Ť               | Ť                 |                     | Ť                |

Closure test within uncertainty

- ullet Final result after multiplication with  $arepsilon_{ ext{OS}}$ 
  - $e + \tau_h$ : 54 ± 6 (stat.) ± 8 (syst.)
  - $\mu + \tau_h$ : 89 ± 9 (stat.) ± 11 (syst.)
- Uncertainties
  - Difference in  $\tau_h$  misidentification rates for quark and gluon jets (12%)
    - $\star$  Use of jet radius decreased the uncertainty from  $\sim 25\,\%$
  - Number of events for OS efficiency estimate (10%)

Contribution from genuine  $\tau$ 's estimated from simulation

Already subtracted

from the other numbers



#### Summary



- QCD multijet background for  $\tau_h$ +jets final state
  - Normalization and shape of  $m_T$  distribution measured separately
  - Factorization of  $\tau_h$  ID and  $E_T^{miss}$ +b-tag+ $\Delta \phi(\tau \text{ jet}, E_T^{miss})$  selections
  - Dominant uncertainties were number of data events, and uncertainties on simulation due to subtraction of  $EWK+t\bar{t}$  events
- EWK+ $t\bar{t}$  genuine  $\tau$  background for  $\tau_h$ +jets final state
  - $-\mu + \ge 3$  jets events and tau embedding method
  - Normalization: correct for various efficiencies
  - Dominant uncertainties were  $\tau$  plus  $E_T^{miss}$  trigger effiency,  $\tau_h$  energy scale, and  $\tau_h$  identification
- Misidentified  $\tau_h$  for  $e+\tau_h$  and  $\mu+\tau_h$  final states
  - e/μ +≥ 3 jets events and jet $\rightarrow$ τ<sub>h</sub> misidentification rate
  - Dominant uncertainties were different  $\tau_h$  misidentification rates for quark and gluon jets, and statistics for OS efficiency estimate