Data Driven Background Estimation for H⁺ in ATLAS

Yoram Rozen

Technion - Israel Inst. Of Technology
On behalf of the ATLAS collaboration

Direct search via H->τν, H->cs

- Fake τ
- True τ (Embedding)
- Multi-jet background
- Matrix method

- Three channels:
 - τ->hadrons:
 - tt->WbHb->qqbHb
 - $t\bar{t}$ ->WbH \bar{b} ->l \sqrt{b} H \bar{b}
 - $\tau \rightarrow |\nu|$

• tt->WbHb->qqbHb Catrin talk morning session

Patrick talk earlier today

- Many common backgrounds
- Heavy use of data to estimate the background
- ATLAS publications with 37 pb⁻¹ and with 4.7fb⁻¹
 - JHEP 1206 (2012) 39; arXiv:1204.2760; CERN-PH-EP-2012-083 (4.7 fb^{-1})
 - ATLAS-CONF-2011-051 (37 pb⁻¹)
 - ATLAS-CONF-2012-011 (4.7 fb⁻¹)

H^+ ->cs

- tt->WbHb->lvbbcs Catrin talk
- ATLAS-CONF-2011-094 (35 pb⁻¹)

Fake rate

Deals with: e, jet ->τ

• An electron or a jet identified as a τ they are dubbed "fake"

- Method:
 - Find the fake rate defined as (#of fakes)/(total # τ candidates)
 - Sum the # of objects (w/ the appropriate selection) multiplied by the above fake rate.
- Different application for each object.
- Done in bins of p_T (and η).

e→τ fakes

- "Tag and probe" method
 - Use clean Z->e⁺e⁻ signal
 - One tight electron to "tag"
 - Other electron to probe the probability to be identified as a τ -jet

Events / 1 GeV

180

160

100

ATLAS Preliminary

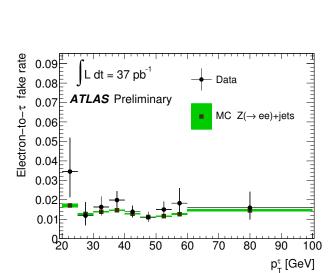
 $\sigma_{\rm data}$ =1.76 ± 0.01 GeV $\sigma_{\rm MC}$ =1.59 ± 0.01 GeV

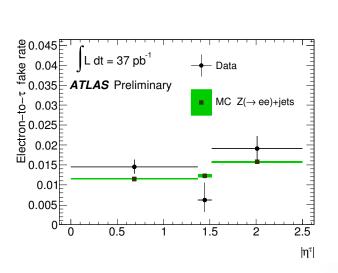
80

85

90

95

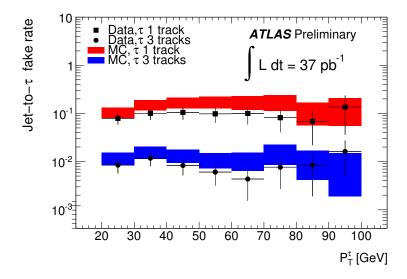

100


Data 2011, \sqrt{s} =7 TeV, $\int L dt = 4.6 \text{ fb}^{-1}$

|η|<2.47 → Data

> > 105

m_{ee} [GeV]



• Similar method for μ but with 2-3 orders smaller -> negligible

4

Jets $\rightarrow \tau$ fakes (1) (37pb⁻¹ publication only)

- γ +jets event are used. Identified by the γ trigger.
- Binned by the number of tracks in the jet and p_T.

- Systematics include:
 - Contamination (real τ) from processes like QCD and Z,W
 - Control sample uncertainty and correlation to other methods.

Jets→τ fakes (2) – Current method

- Non- τ jets are used by selecting a W+jets sample:
 - b-jet veto to reject tt events.
 - Leptonic W.
- Miss-identification probability is measured in bins of p_T and η . Typical values: 7% (1 prong) and 2% (3 prong)
- Applying the probabilities to the number of jets in the final sample (after removing b-tagged jets).

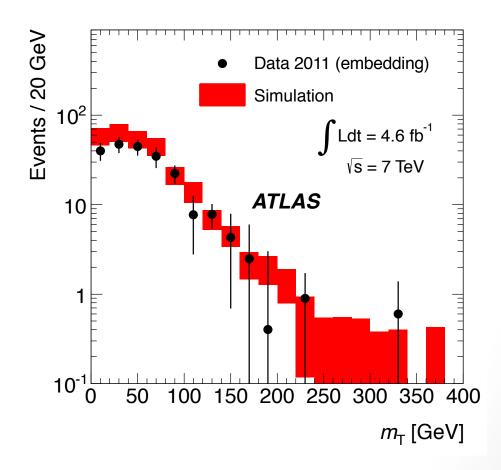
Things to consider (systematics):

- Object related
- q/g ratio difference between the target tt and the W+jets.
- True taus in the sample.
- Control sample size.

Embedding:

Deals with: true τ background (hadronic)

- $t\bar{t}$ -> $X\mu$ is similar to $t\bar{t}$ -> $X\tau$ in everything but μ .vs. τ
- If the μ is replaced by a τ we have a guaranteed background environment with everything but the lepton having data characteristics. (also used in H-> $\tau\tau$)


Procedure:

- Selected $t\bar{t}$ evens containing a μ (from the decaying W)
- Scale the μ momentum to compensate for the mass difference
- Simulate a τ with the scaled μ 4-momenta
- Embed the simulated τ back in the data event
- Run the H⁺ analysis to get the normalization of the tt background:

$$N^{tt-bkg} = N_{sel}^{EMB} (1 - f_{W \to \tau \to \mu}) \frac{\varepsilon_{trig}^{\tau}}{\varepsilon_{sel}^{\mu}} B(\tau \to had)$$

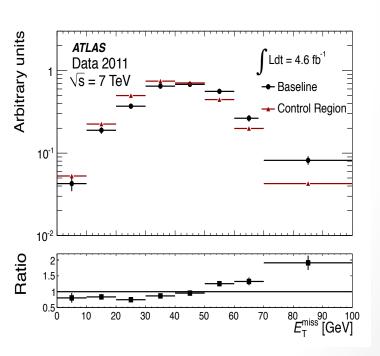
- Since embedding uses $t\bar{t}$ events and universality predicts exactly the number of τs , an absolute bkg prediction can be made.
- m_T shape is the alternative used in the first (37pb⁻¹) pub. to normalize the bkg in a $t\bar{t}$ dominated region

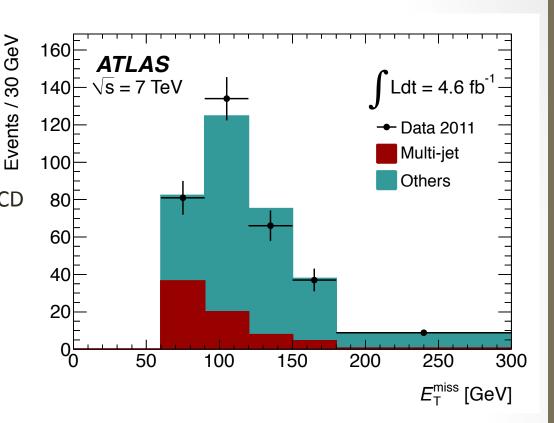
For the τ +jets channel

Embedding (cont.)

Systematics:

- Control sample uncertainty and statistics
- τ simulation (identification, energy scale)
- μ isolation
- Embedding parameters
- m_{τ} shape due to τ energy scale




Control region (inverted selection)

Deals with: multi-jet background

- Template method fitting the E_T^{miss} shape
- Starting with loose τ selection but rejecting the tight selection and a b-veto-> a sample of non-selected events with similar characteristics is obtained.
- E_T^{miss} shape must be similar to the baseline shape (checked at an early selection stage)

- E_T^{miss} shape of other SM and the QCD is fitted to the data.
- Overall normalization and QCD fraction are the only fitted parameters.

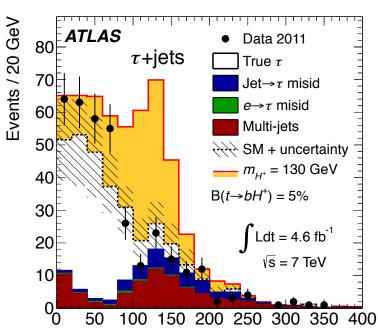
Systematics:

- Fit procedure (range, binning)
- tt and W+jets shape and their relative norm.
- Sample size

Matrix method

Deals with:non-prompt muons (only H->cs)

- Published result with 35pb⁻¹
- Multi-jet background in the $\boldsymbol{\mu}$ channel is estimated with "matrix method"


$$N_{loose} = N_{loose}^{real} + N_{loose}^{fake}$$

$$N_{std} = rN_{loose}^{real} + fN_{loose}^{fake}$$

- r is estimated from Z->μμ
- f is estimated from 2 control regions design to avoid prompt muons
 - Low E_T^{miss} for QCD source
 - High E_T^{miss} but high impact parameter muons
- For the electron channel a likelihood template fit of E_T^{miss} is used

Background Summary

τ+jets channel

Sample	Event yield (τ +jets)
True τ (embedding method)	$210 \pm 10 \pm 44$
Misidentified jet $\rightarrow \tau$	$36 \pm 6 \pm 10$
Misidentified $e \rightarrow \tau$	$3 \pm 1 \pm 1$
Multi-jet processes	$74 \pm 3 \pm 47$
\sum SM	$330 \pm 12 \pm 65$
Data	355
$t \rightarrow bH^+ (130 \text{ GeV})$	$220 \pm 6 \pm 56$
oo Signal+background	$540 \pm 13 \pm 85$
	'

Summary

- Background is no longer divided into physics sources which depend on XS for estimation
- Smaller dependence on simulation
 - -> Reduction in systematic uncertainties
- Background sources are divided into the analysis objects
- All background sources can be estimated in a data driven way.
- Some of the methods are applicable for other searches as well.