H+ Workshop2012

Uppsala 10.10.2012

Penchmarks

(a)

Maria Krawczyk (University of Warsaw)
in collaboration with P. Osland and R. Santos, S. Moretti, M. Pruna, M. Raidal, T. Hurth, A. Akceroyd, I. Ginzburg, B. Świeżewska and many others

Brout-Englert-Higgs mechanism

 Spontaneous breaking of EW symmetry$\mathrm{SU}(2) \times \mathrm{U}(1) \rightarrow$?
T.D. Lee 1973

Two_Higgs Doublet Models
Two doublets of $\operatorname{SU}(2)(Y=1, \rho=1)-\Phi_{1}, \Phi_{2}$
Masses for $\mathbf{W}^{+/-}, \mathbf{Z}$, no mass for photon?
Fermion masses via Yukawa interaction various models: Model I, II, III, IV,X,Y,...
5 scalars: $\mathrm{H}+$ and H - and neutrals:

- CP conservation: CP-even h, H \& CP-odd A
- CP violation: h_{1}, h_{2}, h_{3} with undefinite CP parity*

Sum rules (relative couplings to SM χ)

2HDM's

SYMMETRIES!!!

Potentitel

$$
\begin{aligned}
& V=1 / 2 \lambda_{1}\left(\Phi_{1}+\Phi_{1}\right)^{2}+1 / 2 \lambda_{2}\left(\Phi_{2}+\Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}+\Phi_{1}\right)\left(\Phi_{2}+\Phi_{2}\right) \\
&+\lambda_{4}\left(\Phi_{1}+\Phi_{2}\right)\left(\Phi_{2}+\Phi_{1}\right)+1 / 2\left[\lambda_{5}\left(\Phi_{1}+\Phi_{2}\right)^{2}+\right.\text { h.c] } \\
&+\left[\left(\lambda_{6}\left(\Phi_{1}+\Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}+\Phi_{2}\right)\right)\left(\Phi_{1}+\Phi_{2}\right)+\right.\text { h.c] } \\
&-1 / 2 m^{2}{ }_{11}\left(\Phi_{1}+\Phi_{1}\right)-1 / 2 m^{2}{ }_{22}\left(\Phi_{2}+\Phi_{2}\right)-1 / 2\left[m^{2}{ }_{12}\left(\Phi_{1}+\Phi_{2}\right)+\text { h.c. }\right] \\
& Z_{2} \text { symmetry transformation: } \Phi_{1} \rightarrow \Phi_{1} \Phi_{2} \rightarrow-\Phi_{2} \\
& \text { (or vice versa) }
\end{aligned}
$$

Hard Z_{2} symmetry violation: $\lambda_{6} \lambda_{7}$ terms
Soft Z_{2} symmetry violation: $\mathrm{m}^{2}{ }_{12}$ term
$\left(\operatorname{Re} \mathrm{m}^{2}{ }_{12}=\mu^{2}\right)$
Explicit Z_{2} symmetry in $\mathrm{V}: \lambda_{6}, \lambda_{7}, \mathrm{~m}^{2}{ }_{12}=0$

Z2 symmetric potential

Stable vacuum (positivity)

$$
\begin{aligned}
& \lambda_{1}>0, \quad \lambda_{2}>0, \quad R+1>0, \quad R_{3}+1>0 \\
\lambda_{345}= & \lambda_{3}+\lambda_{4}+\lambda_{5}, \quad R=\lambda_{345} / \sqrt{\lambda_{1} \lambda_{2}}, \quad R_{3}=\lambda_{3} / \sqrt{\lambda_{1} \lambda_{2}}
\end{aligned}
$$

$$
Y=\left.M_{H+}^{2} 2 M^{2}\right|_{\text {Inert }}
$$

Neutral vacua
Mixed (v1 and v2 $=0$) Inert (v1 or v2 $\neq 0$) [Z2 exact, D parity (Rtype) \rightarrow dark matter]

Charged breaking vacuum CB

Phase diagrams Z2 sym. V

coexistence of minima

$$
\mu_{1}=\frac{m_{11}^{2}}{\sqrt{\lambda_{1}}}, \quad \mu_{2}=\frac{m_{22}^{2}}{\sqrt{\lambda_{2}}}
$$

(a) $R>1$

(b) $1>R>0$

(c) $0>R>-1$

Inert 11 vacuum for $\mathrm{Mh}=125 \mathrm{GeV}$

$$
m_{22}^{2} \lesssim 89 \cdot 10^{3} \mathrm{GeV}^{2}
$$

Charged Higgs boson benchmarks in nonsupersymmetric 2HDM -status report (mainly CP conserving)

- Potential and states (λ_{1-5}, if $m_{12}{ }^{2} \neq 0 \mathrm{CPV}$ possible) Various extrema (minima) possible

$$
\begin{aligned}
& \text { Mixed (v1 and v2 } \neq 0 \text {) } \tan \beta=v 2 / v 1 \\
& \text { Inert (v1 or v2 }=0 \text {) }
\end{aligned}
$$

SM-like h with mass 125 GeV $\mathrm{H}+$ masses in Mixed vacuum

$$
\left(Z 2 \text { exact } m_{12}{ }^{2}=0\right)
$$

Inert
Decoupling for large mass parameter - very large MH+ without conflict with pert. unitarity

Unitarity constraints on parameters of V (Z_{2} symmetry)

Full scattering matrix macierz 25×25 for scalars (including Goldstone's)

in high energy limit
Block-diagonal form due electric charge and CP conservation

M1: G+H-, G-H+, hA, GA, GH, hH
M2: G+G-, H+H-, GG, HH, AA, hh
Unitarity constraints
$\rightarrow \mid$ eigenvalues $\mid<8 \pi$
M3: Gh, AH
M4: G+G, G+H, G+A, G+h, GH+, HH+,AH+,hH+
M5: $\mathrm{G}+\mathrm{G}+\mathrm{H}+\mathrm{H}+$
M6: G+H+

Unitarity constraints for lambdas

$$
\begin{aligned}
0 & \leqslant \lambda_{1} \leqslant 8.38 \\
0 & \leqslant \lambda_{2} \leqslant 8.38 \\
-6.05 & \leqslant \lambda_{3} \leqslant 16.44, \\
-15.98 & \leqslant \lambda_{4} \leqslant 5.93 \\
-8.34 & \leqslant \lambda_{5} \leqslant 0
\end{aligned}
$$

Couplings for dark particles in IDM \qquad
$\lambda_{345}=\lambda_{3}+\lambda_{4}+\lambda_{5}$
$\lambda_{45}=\lambda_{4}+\lambda_{5}$

$$
\begin{aligned}
& -8.10 \leqslant \lambda_{345} \leqslant 12.38 \\
& -7.76 \leqslant \lambda_{345}^{-} \leqslant 16.45 \\
& -8.28 \leqslant \frac{1}{2} \lambda_{45} \leqslant 0 \\
& -7.97 \leqslant \frac{1}{2} \lambda_{45}^{-} \leqslant 6.08
\end{aligned}
$$

Mixed vacuum allowed region MH vs MH+

Max Mh vs tan beta Limit on $\tan \beta$!

For Mh = 125 GeV
$0.2 \lesssim \tan \beta \lesssim 6.2$.

Inert vacuum

with Mh=125 GeV

Analysis based on unitarity, positivity, EWPT constraints
arXiv:1209.5725
$M_{H} \leqslant 602 \mathrm{GeV}$, $M_{H^{ \pm}} \leqslant 708 \mathrm{GeV}$, $M_{A} \leqslant 708 \mathrm{GeV}$.

valid up to $\left|m_{22}{ }^{2}\right|=10^{4} \mathrm{GeV}^{2}$

Couplings of Higgs bosons to gauge bosons
 Mixed
 Inert

$\frac{\cos (\beta-\alpha)}{H W^{+}+W^{-}}$	$\frac{\sin (\beta-\alpha)}{h W^{+} W^{-}}$
$H Z Z$	$h Z Z$
	relative to SM

$$
\begin{aligned}
H^{\mp} W^{ \pm} h: & \frac{\mp i g}{2} \cos (\beta-\alpha)\left(p_{\mu}-p_{\mu}^{\mp}\right) \\
H^{\mp} W^{ \pm} H: & \frac{ \pm i g}{2} \sin (\beta-\alpha)\left(p_{\mu}-p_{\mu}^{\mp}\right) \\
H^{\mp} W^{ \pm} A: & \frac{g}{2}\left(p_{\mu}-p_{\mu}^{\mp}\right) .
\end{aligned}
$$

$h W W / Z Z=1$

0
$\sin (\beta-\alpha) \rightarrow 1$
the same

Various models of Yukawa inter.

 typically with some Z2 type symmetry to avoid FCNCModel I - only one doublet interacts with fermions Model II - one doublet with down-type fermions d, l other with up-type ferrnions

Model III - both doublets interact with fermions Model IV (X) - leptons interacts with one doublet, quarks with the other Model Y - one doublet with down-type quarks d other with up-type quarks u and leptons Top 2HDM - top only with one doublet Fermiophobic 2HDM - no coupling to the lightest Higgs + Extra dim 2HDM models

Yukawa interactions

Model	d	u	ℓ
I	Φ_{2}	Φ_{2}	Φ_{2}
II	Φ_{1}	Φ_{2}	Φ_{1}
III	$\Phi_{1} \& \Phi_{2}$	$\Phi_{1} \& \Phi_{2}$	$\Phi_{1} \& \Phi_{2}$
X	Φ_{2}	Φ_{2}	Φ_{1}
Y	Φ_{1}	Φ_{2}	Φ_{2}

Φ_{1}	Φ_{2}	This work	HHG	BHP	G, AS	ARS	AKTY	BFLRSS
	u, d, ℓ	I	I	I	I $\left(^{*}\right)$	-	I	I
d, ℓ	u	II	II	II	II	-	II	II
u, d, ℓ	u, d, ℓ	III	-	-	-	III	-	III
ℓ	u, d	X	-	IV	$\mathrm{I}^{\prime}\left({ }^{*}\right)$	-	X	lepton specific
d	u, ℓ	Y	-	III	II ${ }^{\prime}$	-	Y	flipped

Table 8: Dictionary of notations. "HHG": Higgs Hunter's Guide [1]. "BHP": Barger, Hewett, Phillips [142]. "G": Grossman [130], "AS": Akeroyd, Stirling [5]. The (*) denotes interchange $\Phi_{1} \leftrightarrow \Phi_{2}$. "ARS": Atwood, Reina, Soni [181]. "AKTY": Aoki, Kanemura, Tsumura, Yagyu [180]. "BFLRSS": Branco, Ferreira, Lavoura, Rebelo, Sher, Silva [182].

Yukawa couplings

Mixed (Model II)

$$
\begin{array}{ll}
H^{+} b \bar{t}: & \frac{t y}{2 \sqrt{2} m_{W}} V_{t b}\left[m_{b}\left(1+\gamma_{5}\right) \tan \beta+m_{t}\left(1-\gamma_{5}\right) \cot \beta\right], \\
H^{-} t \bar{b}: & \frac{i g}{2 \sqrt{2} m_{W}} V_{t b}^{*}\left[m_{b}\left(1-\gamma_{5}\right) \tan \beta+m_{t}\left(1+\gamma_{5}\right) \cot \beta\right] .
\end{array}
$$

Inert (Model I)
First (Higgs) doublet like in SM $\Phi_{1} \rightarrow \Phi_{S}$
Second (Dark) doublet has no vev
(no couplings to fermions) $\Phi_{2} \rightarrow \Phi_{\mathrm{D}}$

Minimal Flavour Violation - 2HDM

Z2 symmetry in Yukawa int.- how stable under radiative corrections?
(T. Hurth at al)

> The minimal flavour violation (MFV) hypothesis is a formal solution to the NP flavour problem. It assumes that the flavour and the CP symmetry are broken as in the SM. Thus, it requires that all flavour- and CP-violating interactions be linked to the known structure of Yukawa couplings (called Y_{U} and Y_{D} in the following). A renormalization-group-invariant definition of MFV based on a symmetry principle is given in $[12,13,14]$; this is mandatory for a consistent effective field theoretical analysis of NP effects.

- Mixed Model (a'la MSSM) - Z2 sym. V and Yukawa int., but Z2 is violated spontaneously by vacuum
- Inert Doublet Model= Z2 exact
(potential, Yukawa int.Model I and vacuum)

Large $2 \mathrm{HDM}(\mathrm{II})$ one-loop corrections

 in leptonic tau decays
Model Mixed (II)

D. Temes, MK

Eur.Phys.J.C44(2005)435

Comment to B decay

 - exclusion based onlyon tree diagram...

$$
\begin{array}{rll}
\Delta_{\text {oneloop }} \approx \frac{G_{F} m_{\tau}^{2}}{8 \sqrt{2} \pi^{2}} \tan ^{2} \beta & \bar{\Delta} \\
\bar{\Delta}=\quad & {\left[-\left(\ln \left(\frac{M_{H}^{2}}{m_{\tau}^{2}}\right)+F\left(R_{H \pm}\right)\right)\right.} \\
& +\frac{1}{2}\left(\ln \left(\frac{M_{A}^{2}}{m_{\tau}^{2}}\right)+F\left(R_{A}\right)\right) \\
& +\frac{1}{2} \cos ^{2}(\beta-\alpha)\left(\ln \left(\frac{M_{h}^{2}}{m_{\tau}^{2}}\right)+F\left(R_{h}\right)\right) \\
& \left.+\frac{1}{2} \sin ^{2}(\beta-\alpha)\left(\ln \left(\frac{M_{H}^{2}}{m_{\tau}^{2}}\right)+F\left(R_{H}\right)\right)\right]
\end{array}
$$

LHC (Mixed)

Br - light $\mathrm{H}+$

Branching

BR
 $M_{H^{ \pm}}=300 \mathrm{GeV}$,
 $\left(M_{h}, M_{H}, M_{A}\right)=(120,130,300) \mathrm{GeV}$,

Branching ratios

$\mathrm{H}+\rightarrow \mathrm{Wh}$, WH open, WA not

$$
M_{H^{ \pm}}=300 \mathrm{GeV}, \quad\left(M_{h}, M_{H}, M_{A}\right)=(120,300,100) \mathrm{GeV} .
$$

Branching ratios

$H^{+} \rightarrow W^{+} A$ and $H^{+} \rightarrow W^{+} h$ are both open, whereas $H^{+} \rightarrow W^{+} H$ is not,

Branching ratios

Branching ratios

Exp. constraints

(mainly Model II)

Some observables depends solely on H+
(indep. on CPV) others also on neutral scalars
1/ tree-level $\mathrm{H}+$ (eg.B \rightarrow tv)
2/ loop H+ (eg.B $\rightarrow X_{s} \gamma$, mass $\mathrm{H}+>380 \mathrm{GeV}$)
3/ LEP (mass H+ above 75 GeV)
4/ LHC - SM h search
5/TeVatron $\mathrm{t} \rightarrow \mathrm{H}+\mathrm{b}$
6/ LHC
7/ Other precise data: EWPT, g-2 for muon, electron el. dipole moment (CPV)

Cross sections at LHC

$m_{H^{ \pm}}$		100 GeV			150 GeV		
$\tan \beta$		3	10	30	3	10	30
$H^{ \pm}(g)$	(6.1)	\times	\times	\times	\times	\times	\times
$b \bar{b} W^{ \pm} H^{\mp}$	$(6.2 \mathrm{c})$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	\times	\times
$H^{ \pm} b q$	$(6.3 \mathrm{~d})$	$\sqrt{ }$	$(\sqrt{ })$	\times	$\sqrt{ }$	\times	\times

Table 2: Low-mass benchmarks for Models I and X at $30 \mathrm{fb}^{-1}$. The case denoted by $(\sqrt{ })$ requires higher luminosity.

$$
\begin{aligned}
p p \rightarrow H^{ \pm} W^{\mp} X & \rightarrow W^{+} W^{-} H_{1} X \\
& \rightarrow \ell \nu j j b \bar{b} X
\end{aligned}
$$

	α_{1} / π	α_{2} / π	α_{3} / π	$\tan \beta$	M_{2}	$M_{H \pm}^{\min }, M_{H \pm}^{\max }$
P_{2}	0.35	-0.014	0.48	1	300	380,415
P_{3}	0.35	-0.015	0.496	1	350	380,450
P_{4}	0.35	-0.056	0.43	1	400	380,455
P_{5}	0.33	-0.21	0.23	1	450	380,470
P_{7}	0.39	-0.07	0.33	2	300	380,405

Other talks..

Models with several H+

Models with DM candidates IDM
 SO(10) and GUT-induced scalar DM scenario

LHC:

production H+H- or

+ S singlet

$$
H^{ \pm} \rightarrow S_{i} f \bar{f}^{\prime}
$$

via real or virtual W

- el. neutral Dark scalar

In the considered models $H^{ \pm}$and $S_{\text {DM }}$ may be close in mass. The $H^{ \pm}$will then be long-lived, travel a macroscopic distance inside the tracker of an LHC experiment, and decay far from the interaction point, leading to a charged lepton and missing E_{T}. The displaced vertices of $H^{ \pm}$decays are theoretically free from SM background and enable discovery of the $H^{ \pm}$at the LHC for the constrained scenario [162].

Figure 17: Cross-sections for $p p \rightarrow H^{+} H^{-}$via $q \bar{q}$ (red), $p p \rightarrow H^{+} H^{-}$via $g g$ (blue), $p p \rightarrow S_{i} H^{+}$(green) and $p p \rightarrow S_{i} H^{-}$(black) at the LHC for $\sqrt{s}=14 \mathrm{TeV}$. The lahels $i-3.4$ refor to the two heavior noutral scalars

Benchmarks for LHC (14 TeV)

Summary

Non supersymmetric 2HDM a great laboratory
It offers Higgs boson and DM

Various SM-like scenarios possible H+ (Higgs or just scalar)
Work in progress on report

Loop couplings hgg and h$\rangle \mathrm{Y}$

For hgg

- b and t important

For $h \gamma \gamma$

- t (b), W, H+
(in 2HDMs)

Beyond SM: $H^{ \pm}, \chi^{ \pm}, \tilde{q}, \tilde{l} .$.

W and t destructive interfence in SM, so...

Identifying an SM-like Higgs particle at future colliders

LC-TH-2003-089
I. F. GInZburg ${ }^{1}$, M. Krawczik ${ }^{2}$ and P. Osland ${ }^{3}$

SM-like scenario. One of the great challenges at future colliders will be the SM-like scenario that no new particle will be discovered at the Tevatron, the LHC and electronpositron Linear Collider (LC) except the Higgs boson with partial decay widths, for the basic channels to fundamental fermions (up- and down-type) and vector bosons W / Z, as in the SM:

$$
\begin{equation*}
\left|\frac{\Gamma_{i}^{\exp }}{\Gamma \mathrm{SM}}-1\right| \lesssim \delta_{i} \ll 1 . \quad \text { where } i=u, d, V \tag{1}
\end{equation*}
$$

Then for the relative couplings (vs SM)

$$
\text { for } i=u, d, V \text {. }
$$

$$
\chi_{i}^{\text {obs }}= \pm\left(1-\epsilon_{i}\right), \quad \text { with }\left|\epsilon_{i}\right| \ll 1 . \quad\left|\epsilon_{i}\right| \leq \delta_{i}
$$

Using pattern relation

$$
\left(\chi_{u}+\chi_{d}\right) \chi_{V}=1+\chi_{u} \chi_{d} .
$$

oop couplings ggh/H, $\gamma \gamma h / H$ $2 H D M\left(Z_{2}\right)=$ Mixed

 Ginzburg, Osland, MK '2001Tree couplings as in SM - close to 1 (solution A) suppression due to $\mathrm{H}+600 \mathrm{GeV}$)

solution B $\rightarrow{ }_{~ " w r o n g " ~ s i g n s ~ o f ~ f e r m i o n ~ c o u p l i n g s ~}^{\text {w }}$

Both h and H maybe SM-like

Two solutions:

> A - all couplings close to 1
> B - one Yukawa coupling close to -1

Loop induced couplings $\mathrm{gg}, \gamma \gamma, \mathrm{Z} \gamma$ different for A and B

$$
\mathrm{MH}+=600 \mathrm{GeV}
$$

For h or H with mass 120 GeV

solution	basic couplings	$\left\|\chi_{g q}\right\|^{2}$	$\left\|\chi_{\gamma \gamma}\right\|^{2}$	$\left\|\chi_{Z_{\gamma}}\right\|^{2}$
$A_{h \pm} / A_{H_{-}}$	$\chi_{V} \approx \chi_{d} \approx \chi_{u} \approx 1$	1.00	0.90	0.96
$B_{h \pm d} / B_{H-d}$	$\chi_{V} \approx-\chi_{d} \approx \chi_{u} \approx \frac{1}{}$	1.28	0.87	0.96
$B_{h \pm u}$	$\chi_{V} \approx \chi_{d} \approx-\chi_{u} \approx \frac{1}{1}$	1.28	2.28	1.21

Collider. The observation of loop-induced couplings can distinguish models in the frame of the "current SM-like scenario" determined via currently measured coupling constants. Even at the Tevatron the solution B_{h+u} can easily be distinguished via a study of the process $g g \rightarrow \phi \rightarrow \gamma \gamma$ with rate about three times higher than that in the SM (the product

IDM: decay width $\gamma \gamma$ h

For negative λ_{3}
It maybe larger than in SM

Ma'2007

$\left.\frac{G_{\mu} \alpha^{2} m_{h}^{3}}{128 \sqrt{2} \pi^{3}}\right|_{f} N_{C} Q_{f}^{2} g_{h f f} \mathcal{A}_{1 / 2}\left(\tau_{f}\right)+g_{h W W} \mathcal{A}_{1}\left(\tau_{W}\right)+\frac{m_{H^{ \pm}}^{2}-\mu_{2}^{2}}{\sqrt{2} m_{H^{ \pm}}^{2}} \mathcal{A}_{0}\left(\tau_{H \pm}=\left.\boldsymbol{\lambda}_{3}\right|^{2}\right.$

$\mathbf{g g} \rightarrow \mathrm{h} \rightarrow \mathrm{YY}$ in IDM

$$
R_{\gamma \gamma}=\frac{\sigma_{h}^{\gamma \gamma}}{\sigma_{h_{S M}}^{\gamma \gamma}}=\frac{\sigma(g g \rightarrow h) \times \operatorname{Br}(h \rightarrow \gamma \gamma)}{\sigma(g g \rightarrow h)^{S M} \times \operatorname{Br}(h \rightarrow \gamma \gamma)^{S M}}=\frac{\operatorname{Br}(h \rightarrow \gamma \gamma)}{\operatorname{Br}(h \rightarrow \gamma \gamma)^{S M}}
$$

Arhrib at al

Blue : R > 1
When $\lambda_{3}<0\left(\right.$ and $\lambda_{345}<0$

From the EW symmetric phase to the INERT phase in T2 approximation

In the simplest T2 approximation only mass terms in V vary with temperature like T², while λ^{\prime} are fixed

Various scenarios possible in one, two or three steps, with $1^{\text {st }}$ or $2^{\text {nd }}$ type phase transitions \rightarrow Sokołowska talk

Ginzburg, Kanishev, MK, Sokołowska Phys. Rev D 2010

Strong Electroweak Phase Transition.G.Gil et al. PLB 2012 Phases at TE0 (bevond T2)

Xenon100 bound

