Closing the window on light H+ in NMSSM

Thomas Rössler

based on arXiv:hep-ph/1206.1470 with J. Rathsman

Motivation

- MSSM provides two doublets h, H, A, H^\pm with $m_{H^\pm}^2 = m_A^2 + m_W^2$ at tree level
 - Higgs sector 2 param., e.g. $m_{H^\pm}, an eta$
 - $H^{\pm} \to AW$ typically closed
- NMSSM adds additional singlet
 - singlet-doublet-mixing $\rightarrow h^{\pm} \rightarrow a_1 W$ can be dominant
 - not searched for in standard searches
- considering collider constraints on NMSSM, put special focus on light a_1 closely above $b\bar{b}$ threshold
- fragmentation to single $b\bar{b}$ jet

NMSSM Higgs sector

$$\mu \hat{H}_u \cdot \hat{H}_d = 0$$

$$W_{\rm NMSSM} = W_{\rm MSSM} + \lambda \hat{S} \hat{H}_u \cdot \hat{H}_d + \kappa \hat{S}^3$$

$$V_{\rm soft}^{\rm NMSSM} = V_{\rm soft}^{\rm MSSM} + m_S^2 |S|^2 + \left(\lambda A_\lambda S H_u \cdot H_d + \frac{1}{3} \kappa A_\kappa S^3 + h.c.\right)$$

$$\mathcal{M}_P^2 = \begin{pmatrix} \frac{2\mu}{\sin 2\beta} \left(A_\lambda + \frac{\kappa}{\lambda}\mu\right) & \lambda v \left(A_\lambda - 2\frac{\kappa}{\lambda}\mu\right) \\ \lambda v \left(A_\lambda - 2\frac{\kappa}{\lambda}\mu\right) & \frac{\lambda^2 v^2 \sin 2\beta}{2\mu} \left(A_\lambda + 4\frac{\kappa}{\lambda}\mu\right) - 3\frac{\kappa}{\lambda} A_\kappa \mu \end{pmatrix}$$

$$M_P^2 = \begin{pmatrix} \frac{2\mu}{\sin 2\beta} \left(A_\lambda + \frac{\kappa}{\lambda}\mu\right) & \frac{\lambda^2 v^2 \sin 2\beta}{2\mu} \left(A_\lambda + 4\frac{\kappa}{\lambda}\mu\right) - 3\frac{\kappa}{\lambda} A_\kappa \mu \end{pmatrix}$$

$$using I-loop$$

$$m_{h^\pm}^2 = \frac{2\mu}{\sin 2\beta} \left(A_\lambda + \frac{\kappa}{\lambda}\mu\right) + m_W^2 - \lambda^2 v^2$$

$$\mu = \lambda v_s = \lambda < S >$$
solves μ -problem

Scenario specification

$$\tan \beta = v_u/v_d \in [1, 60] \quad \mu \in [125, 1000] \text{ GeV}$$

 $\lambda \in [0, 0.7] \qquad m_{h^{\pm}} \in [80, 170] \text{ GeV}$
 $\kappa \in [-0.7, 0.7] \qquad m_{a_1} \in [4, 150] \text{ GeV}$

- ullet common sfermion mass $M_{
 m SUSY}=1~{
 m TeV}$ & MFV
- gaugino masses by $M_1=100~{\rm GeV},\,M_2=200~{\rm GeV},\,M_3=800~{\rm GeV}$ (cf CMSSM, grav.med.)
- squark/slepton trilinears unified, but variable (stop mixing) $A_t = A_b = A_\tau \in [-5000, 5000]$ GeV

Experimental constraints I

- Collider
 - direct searches for Higgs bosons
 - direct searches for sparticles
- Low energy flavour
 - $\bullet \quad B_u \to \tau^+ \nu_\tau$
 - $\bullet \quad B_s \to \mu^+ \mu^-$

Experimental constraints I

- Collider
 - direct searches for Higgs bosons
 - direct searches for sparticles
- Low energy flavour
 - $\bullet \quad B_u \to \tau^+ \nu_\tau$
 - $\bullet \quad B_s \to \mu^+ \mu^-$

Experimental constraints I

- Collider
 - direct searches for Higgs bosons
 - direct searches for sparticles
- Low energy flavour
 - \bullet $B_u \to \tau^+ \nu_{\tau}$
 - $\bullet \quad B_s \to \mu^+ \mu^-$

Experimental constraints II

Experimental constraints II

allowed for essentially all charged Higgs masses

 $h^{\pm} \rightarrow a_1 W$ dominant in this region

S/B analysis

- LHC @ 8 TeV
- ullet m_{a_1} set to $oxed{\mathsf{II}}$ GeV
- $ullet m_{h^+} = 100/130/150 \; {
 m GeV}$

repr. kinematic cases

 \Rightarrow to be clustered as I jet

- $\cos^2 \theta_A$ dependence
- W+/- lept./hadr. selected
- ullet BG: $tar{t}bar{b}$ and $tar{t}$ + mistag

Packages, reconstruction, tagging

- ME from 2HDMC / MadEvent 5 1.3.16
- Full hadron-level simulation using PYTHIA 8.1.5.3
- Jet recon. using FastJet libraries (anti-kT, R=0.5)
- Simplified b-tagging sim.: cone R=0.4 around true parton-level b-quark if $|\eta|$ < 2.5, assumed efficiency 0.6
- reducible BG: $t\bar{t}$ + mistag (0.01 mistag probability for jets inside tagger region)

Reconstruction

• std kinematical cuts (iso. lepton, lepton p_{\perp} , η , MET,)

no double-counting \Rightarrow remove $t\bar{t}b\bar{b}$ part of the $t\bar{t}$

 $\Rightarrow t \bar{t}$ contributes only with mistagged jets

Require ≥3 b-jets

for signal and irreducible BG

h+ reconstruction

ambiguity in identifying

$$a_1 \to b\bar{b} \to b-\mathrm{jet}$$
 $W_{lept} \to b-\mathrm{jet}$

m_{h^\pm}	100 (GeV	$130 \mathrm{GeV}$		$150 \mathrm{GeV}$	
b-jet selection	high p_{\perp}	low p_{\perp}	high p_{\perp}	low p_{\perp}	high p_{\perp}	$low p_{\perp}$
$\overline{\mathrm{BR}_{crit}(t\to bh^+\to ba_1W\to bb\bar{b}W)}$	0.014	0.014	0.0060	0.0065	0.0085	0.0085

Compatibility with "Higgs" signal I

theoret. uncertainty? other scenario?

 h_1 lightest CP-even Higgs

$$R_{gg\gamma\gamma}^{h_i} = \frac{\sigma(gg \to h_i)_{\text{NMSSM}}}{\sigma(gg \to \phi)_{\text{SM}}} \frac{Br(h_i \to \gamma\gamma)_{\text{NMSSM}}}{Br(\phi \to \gamma\gamma)_{\text{SM}}}$$

Compatibility with "Higgs" signal II

Conclusion

- Constraints on parameter space (incl. LHC) for NMSSM from direct searches and indirect/flavour observables
- Light CP-odd Higgs signal search in $t\bar{t}$ production using $h^{\pm} \to a_1 W$: signal visible if combined BR $t \to bh^+ \to ba_1 W \to bb\bar{b}W$ is larger than \approx 0.01
- ATLAS/CMS Higgs signal: different scenarios of compatibility: h_2 seems to be most promising

Thank you

Closing the window on light H+ in NMSSM

Thomas Rössler

based on arXiv:hep-ph/1206.1470 with J. Rathsman

Backup

Vertex	NMSSM	MSSM	SM	
h_1tt	\mathbf{S}_{11}	$\frac{\cos \alpha}{}$	1	
70100	\sineta	$\sin \beta$		
h_1bb	$rac{\mathbf{S}_{12}}{\coseta}$	$\frac{\sin \alpha}{\cos \beta}$	1	
h_2tt	$\mathbf{S}_{21}^{\cos ho}$	$\sin \alpha$	n.a.	
	$\overline{\sin eta}$	$\overline{\sin eta}$		
h_2bb	\mathbf{S}_{22}	$\frac{\cos \alpha}{\alpha}$	n.a.	
	$\cos eta$	$\cos \beta$		
a_1tt	$\cot eta \cos heta_A$	$\cot eta$	n.a.	
$\underline{\qquad a_1bb}$	$\tan \beta \cos \theta_A$	$\tan \beta$	n.a.	
h_1VV	$\sin\beta\mathbf{S}_{11} + \cos\beta\mathbf{S}_{12}$	$\sin(\beta - \alpha)$	1	
h_2VV	$\sin\beta\mathbf{S}_{21} + \cos\beta\mathbf{S}_{22}$	$\cos(\beta - \alpha)$	n.a.	
a_1h_1Z	$(\cos\beta\mathbf{S}_{11} - \sin\beta\mathbf{S}_{12})\cos\theta_A$	$\cos(\beta - \alpha)$	n.a.	
a_1h_2Z	$(\cos\beta\mathbf{S}_{21} - \sin\beta\mathbf{S}_{22})\cos\theta_A$	$\sin(\beta - \alpha)$	n.a.	
$h_1h^+W^-$	$\cos\beta\mathbf{S}_{11} - \sin\beta\mathbf{S}_{12}$	$\cos(\beta - \alpha)$	n.a.	
$a_1h^+W^-$	$\cos heta_A$	1	n.a.	

Kinematical distributions

Experimental constraints II

Experimental constraints III

