Charged Higgs search with SuperB

Alberto Lusiani

INFN sezione di Pisa Scuola Normale Superiore di Pisa

on behalf of SuperB

The SuperB project

- $\Upsilon(4S)$ -peak asymmetric energy e^+e^- Super Flavor Factory
- flexible design will also allow running at the charm threshold
- 80% polarized electron beam further defines the already clean initial e^+e^- state
- ♦ accelerator: ~100× BABAR & Belle luminosity with same power with nano-beams
- ♦ detector: moderately improved BABAR detector (e.g. vertex detector closer to the beam)
- ♦ $L = 10^{36} \text{ cm}^{-2} \text{s}^{-1}$ around the $\Upsilon(4S)$, 10 times less at the charm threshold
 - \triangleright $\Upsilon(4S)$: coherent B mesons & time-dep. measurements, charm hadrons, tau leptons
 - ▶ charm threshold: **coherent D mesons** & time-dep. measurements, tau leptons
- Physics program
 - ▶ topics: bottom and charm physics, tau LFV, precision EW, light new physics
 - ▶ emphasis: new physics sensitivity **competitive** and **complementary** with LHC experiments
 - \blacktriangleright don't forget: e^+e^- clean data for precision measurements in almost every energy-accessible topic
- start data-taking in ~2018, collect 75 ab^{-1} around $\Upsilon(4S)$ in 5 years
 - ▶ also 0.5 ab^{-1} at charm threshold, 1 ab^{-1} at $\Upsilon(5S)$

The accelerator

- ♦ the most innovative element of SuperB is the accelerator
- ♦ ~100× more luminosity using same power budget: squeeze beams or larger currents & larger ring
- ♦ larger ring: less synchroton radiation energy loss but thicker beam because of less damping
- nano-beams (same strategy as ILC)
 - \sim 25× thinner beam transverse section $\sigma_X \times \sigma_V$ in storage ring (low emittance)
 - ▶ ~100× thinner $\sigma_X \times \sigma_V$ at collision (σ_V from ~3 μ m to **20–40 nm**) (strong focusing)
 - ► thinner beams → shorter lifetime by factor ~5, i.e. ~5 minutes (need continuous injection) however this does not mean significantly higher RF power:
 - to accelerate e⁺/e⁻ one needs 4/7 GeV
 - every 1000 turns, synchroton radiation takes away ~17 GeV, providing beam damping
 - nano-beams have side benefit of moderate increase of background w.r.t. B-factories

SuperB Detector

- similar requirement as B-factories
 - ▶ Large solid angle coverage, good lepton ID, πK PID up to 4 GeV
 - ► resolve B mesons decay time difference
 - good low momentum resolution, good low energy photon energy resolution
- main differences
 - lower machine boost ($\beta \gamma = 0.24$ vs. $\beta \gamma = 0.56$ in BABAR)
 - → need to improve vertex detector resolution → SVT layer 0
 - much higher luminosity (and L-scaling background rates)
 - → faster & more robust detectors
 - → open, 100% efficient trigger
- ♦ thanks to low currents, can re-use parts of BABAR detector

SuperB Detector

SuperB physics reach documents

- 2005 Hewett et al., The Discovery Potential of a Super B factory, hep-ph/0503261
- 2007 Conceptual Design Report, arXiv:0709.0451 [hep-ex]
- 2008 Valencia retreat proceedings, arXiv:0810.1312 [hep-ex]
- 2010 SuperB white paper: Physics, arXiv:1008.1541 [hep-ex]
- 2011 The Discovery Potential of a Super B Factory, arXiv:hep-ph/0503261
- 2012 SuperB Physics Programme (submitted to ESG Cracow Sep 2012)

SuperB golden modes

(indirect searches for NP need 1) good exp. precision & 2) good theory understanding)

B_{u,d} Physics

$$B^+ \rightarrow \mu^+ \nu$$

$$B^+ \to \tau^+ \nu$$
, $B^+ \to \mu^+ \nu$, $B^+ \to K^{(*)+} \nu \overline{\nu}$, $b \to s \gamma$, $b \to s \ell \ell$

$$b \rightarrow s \gamma$$

$$b \to s\ell\ell$$

lacktriangle precision $\sin 2\beta$ measurements, in particular $B \to \eta' K_S^0, \to K_S^0 \pi^0 \gamma$

au Physics

• Lepton flavour violation in tau decays: especially $\tau \to \mu \gamma$ and $\tau \to 3\ell$

Charm Physics

♠ mixing parameters and CP violation.

B_s Physics

- lack Semi-leptonic *CP* asymmetry A_{SI}^{S} .
- $igoplus B_S \to \gamma \gamma$.

Other Physics

- Precision measurement of $\sin^2 \theta_W$ at $\sqrt{s} = 10.58 \text{ GeV}/c^2$.
- Direct searches for non-standard light Higgs bosons, Dark Matter and Dark Forces

SuperB strong-points

- fair share of measurements is not systematically limited $\rightarrow L = 1.10^{36}$ worth doing
- lacktriangleright B physics measurements and searches with π^0 , γ or many K^0 's cannot be done at LHC
- most tau measurements and searches cannot be done at LHC
- ♦ charm threshold production: no competitor for measurements based on entanglement
- ♦ beam polarization allows
 - improved tau physics, with advantages over Belle2
 - even precision electro-weak physics (not presented here, see white paper)

Leptonic & radiative B decays sensitive to H⁺

- suppressed in SM, reasonably clean SM predictions, potentially large effects from NP
- \blacklozenge neutrinos, photons, inclusive final state require clean env. $\longrightarrow e^+e^-$ annihilations
- ♦ B-factories BABAR & Belle now, **SuperB** and Belle2 in the future

$\mathcal{B}(B \to \tau \nu)$ theory predictions

$\mathcal{B}(B \to \tau \nu)$ experiment results (CKM 2012)

Previous Branching Fractions (x10⁻⁴)

BaBar Hadronic (2008) $1.8 ^{+0.9}_{-0.8} \pm 0.4 \pm 0.2$

BaBar SL (2010) $1.7 \pm 0.8 \pm 0.2$

Belle Hadronic (2006) $1.79 \, {}^{+0.56}_{-0.49} \, {}^{+0.46}_{-0.51}$ Belle SL (2010) $1.54 \, {}^{+0.38}_{-0.37} \, {}^{+0.29}_{-0.31}$ Belle Hadronic (2012) $0.72 \, {}^{+0.27}_{-0.25} \pm 0.11$

BaBar Hadronic (2012) $1.83^{+0.53}_{-0.49} \pm 0.24$

 $f_B = (189\pm4) \text{ MeV}$ [(HPQCD) arXiv:1202.4914] Inclusive BaBar |Vub| [arXiv:1112.0702]

$$\mathcal{B}_{\rm SM} = (1.18 \pm 0.16) \times 10^{-4}$$

Exclusive BaBar |Vub| [PoS(EPS-HEP2011)155 (2011)]
$$\mathcal{B}_{
m SM} = (0.62 \pm 0.12) imes 10^{-4}$$

Measurement is 1.6 σ larger BaBar combined $\mathcal{B}(B o au
u) = (1.79 \pm 0.48) imes 10^{-4}$ than SM prediction

$\mathcal{B}(B \to \tau \nu)$: H⁺ bounds (BABAR at CKM 2012)

SM prediction using $|V_{ub}|$ inclusive (red) and $|V_{ub}|$ exclusive (blue)

2HDM-II H⁺ esclusion

$\mathcal{B}(B \to \tau \nu)$: SuperB sensitivity

- ♦ world average uncertainty ~20% now
- use fully reconstructed hadronic tag (more clean, convenient with high statistics)
- ♦ tune MC prediction of "extra energy" distribution with data control samples
- ♦ scaling uncertainty of BABAR hadronic tag analysis (30%) from 468 fb⁻¹ to 75 ab⁻¹ yields **2.37%**
- ♦ SuperB white paper estimate, including systematics: **3.5%**

$\mathcal{B}(B \to \tau \nu)$: 2HDM-II H^+ bounds from now to SuperB (90% CL)

- \blacklozenge assume to measure $\mathcal{B}(B \to \tau \nu)$ exactly at the SM prediction (no luck factor)
 - today with WA precistion
 - ▶ with SuperB with 3.5% precision

$\mathcal{B}(B \to s\gamma)$: theory predictions

M.Misiak et al, Phys. Rev. Lett. 98, 022002 (2007)

- ♦ SM prediction: $\mathcal{B}(B \to s\gamma) = (315 \pm 23) \times 10^{-6}$
- bound on 2HDM-II H^+ (in 2007): $m(H^+) > 295 \text{ GeV } 95\% \text{ CL}$
- ♦ paper includes information to compute H⁺ bounds as function of BR value and uncertainty

$\mathcal{B}(B \to s\gamma)$: experiment results (HFAG 2012)

Mode	\mathcal{B}	E_{\min}	$\mathcal{B}(E_{\gamma} > E_{\min})$	$\mathcal{B}^{\mathrm{cnv}}(E_{\gamma} > 1.6)$
CLEO Inc. [2]	$321 \pm 43 \pm 27^{+18}_{-10}$	2.0	$306 \pm 41 \pm 26$	$328 \pm 44 \pm 28 \pm 6$
Belle Semi.[3]	$336 \pm 53 \pm 42^{+50}_{-54}$	2.24	_	$369 \pm 58 \pm 46 \pm 60$
Belle Inc.[4]	_	1.7	$345 \pm 15 \pm 40$	$350 \pm 15 \pm 41 \pm 1$
BABAR Semi.[5]	_	1.9	$329 \pm 19 \pm 48$	$352 \pm 20 \pm 51 \pm 4$
BABAR Inc. [6]	_	1.8	$321 \pm 15 \pm 29 \pm 8$	$332 \pm 16 \pm 31 \pm 2$
BABAR Full [7]	$391 \pm 91 \pm 64$	1.9	$366 \pm 85 \pm 60$	$390 \pm 91 \pm 64 \pm 4$
Average				$343 \pm 21 \pm 7$

$\mathcal{B}(B \to s\gamma)$ prospects

- ♦ both theory and experiment have ~7% uncertainty
- plan to use fully inclusive analysis with reconstracted hadronic recoil tag
 - ▶ more convenient than now with SuperB statistics
- expect measurement systematically limited to 3% uncertainty
- theory will soon improve to 5% (A.Crivellin, private communication)
 - ▶ no consensus on feasibility & time-scale of further reduction theory error

$\mathcal{B}(B \to s\gamma)$: estimated SuperB bounds on H^+

- assume to measure exactly the SM prediction
 - ► today: WA precision, with SuperB: uncertainty = 3% (no improvement on theory error)

$\mathcal{B}(B \to D^{(*)}\tau\nu)$: theory predictions

J.F. Kamenik @ CKM2010 and J. F.Kamenik, F. Mescia, arXiv:0802.3790 [hep-ph]

$$r_{H} = R / R_{SM} = 1 + 1.5 \operatorname{Re}(C_{NP}^{\tau}) + 1.1 |C_{NP}^{\tau}|^{2}$$

$$C_{NP}^{\tau} = -\frac{m_{b} m_{\tau}}{m_{H^{\pm}}^{2}} \frac{\tan^{2} \beta}{1 + \epsilon_{0} \tan \beta}$$

$$R = \frac{BF(B \to D\tau \nu)}{BF(B \to De\nu)}$$

- $\mathcal{B}(B \to D^* \tau \nu)$ less sensitive to NP contributions
- lack both channels less powerful than $\mathcal{B}(B \to \tau \nu)$

 $B\to \ \overline{D}\tau^+\nu_\tau$ more sensitive in the "B $\to \tau^+\nu_\tau$ pathological"region

$\mathcal{B}(B \to D^{(*)}\tau\nu)$ experiment results (BABAR at CKM 2012)

Decay	$N_{ m sig}$	$N_{ m norm}$	$R(D^{(*)})$	$\mathcal{B}(B \to D^{(*)} \tau \nu) (\%)$	$\Sigma_{ m tot}(\sigma)$
$D\tau^-\overline{\nu}_{\tau}$	489 ± 63	2981 ± 65	$0.440 \pm 0.058 \pm 0.042$	$1.02\pm0.13\pm0.11$	6.8
$D^*\tau^-\overline{\nu}_{ au}$	888 ± 63	11953 ± 122	$0.332 \pm 0.024 \pm 0.018$	$1.76 \pm 0.13 \pm 0.12$	13.2

- First 5σ observation of B→Dτv
- Agreement with previous measurements

SM prediction from Phys. Rev. D 85, 094025 (2012

> Average does not include this analysis

$\mathcal{B}(B \to D^{(*)}\tau\nu)$ experiment results (BABAR at CKM 2012)

$\mathcal{B}(B \to D^{(*)}\tau\nu)$: 2HDM-II H^+ bounds (BABAR at CKM 2012)

$\mathcal{B}(B \to D\tau\nu)$ 2HDM-II H^+ bounds

- ♦ assume to measure exactly the SM prediction with today's precision
- lack no estimate yet for $\mathcal{B}(B \to D^{(*)} \tau \nu)$ with SuperB)

$B \rightarrow D \tau \nu$ constraints on 2HDM-II

Other decay modes sensitive to charged Higgs

- \blacklozenge $B \rightarrow \mu \nu$ SuperB will measure with about 6% precision
 - ▶ after 30 ab⁻¹ this mode is more effective than $B \to \tau \nu$
- $b \rightarrow sI^{+}I^{-}$
- lacktriangle CPV in tau decay ($H^+ W$ interference, requires H^+ complex couplings)
 - ► CLEO 2002 paper, Phys.Rev.Lett.88:111803,2002, CPV in $\tau \to K\pi\nu$

Conclusions

- ♦ SuperB will be able to set significant bounds on charged Higgs
- ♦ examined channels are not easily accessible in facilities other than e⁺e⁻