Mimosa 26 performance with laser

Ulrich Kötz Oleg Kuprash

PLUME phone call, 11 January 2012

Mimosa 26

- Monolitic active pixel sensor with fast binary readout
- the device fabricated in a standard 0.35 µm CMOS process
- size 13.7 mm x 21.5 mm, 576x1152 pixels of 18.4 μm pitch
 - thickness of the epitaxial layer
 is 14-20 µm (depending on chip version)
 - integrated zero suppression
 - on-pixel amplification and double sampling operation
 - one discriminator per column

Mimosa 26

Three readout modes:

- normal mode \rightarrow digital data after zero suppression
- two digital test modes:
- reading one line during each integration period
- automatic scanning of t
- two analogue test mode
- readout of rightmost 8 c
- scanning the whole ma

Two clock frequencies:

- 80 MHz (nominal)
- 20 MHz (for analogue te

The readout time of last

8 columns at nominal fre is 115 us

11 January 2011

he 576 l	ines, one per integration time	
5.	Selectable analogue outputs ~ 200 µm	♠
<mark>column</mark> s		
trix by b	ocks of 8 columns	
ouencer souencer	Pixel Array	
8 B	1152 x 576 E	
ests)	738	
Rowselect		
auencv ₌	Column-level Discriminator	
un of	Zero Suppression	
88	JTAG Seq. Ctrl. PLL Memory 1 Memory 2 Bias DAC Test Block	
	~21.5 mm	Ţ
	< <u>↓</u>	•

readout of

last 8 columns

Laser

Advantages of sensor studies using laser shots in comparison to studies with the radioactive source (Fe-55):

- possibility to set exact position of the beamspot (and even vary it within one pixel)
- possibility to change shots frequency and intensity \rightarrow study timing performance of the sensor

Characteristics of the used laser:(*specified by manufacter*)

- wavelength: 904 nm (absorbtion length in silicon: ~25 um)
- bandwidth: 3.5 nm
- pulse duration (FWHM): 10ns
- rise time: ≤ 1 ns, fall time: ≤ 18 ns
- max. impulse frequency: 10kHz for full power, 20 kHz for half-power
- collimator:
- focal length: 20.1 mm
- diameter of focused beam: ≈ 5 um
- mounted on precision stages, scale division is 10 um for horizontal movements and 5 um for vertical

Hardware

20 MHz clock

Two USB imager boards on VME crate: readout cycle 455 frames (209 ms)

Results

Signal in different columns

Distribution of noise in single pixel

pedestal = 8.6, sigma = 3.4

on the following plots pedestals are subtracted

(it is taken, that there is a signal in pixel if its amplitude is greater than pedestal + 3sigma)

11 January 2011

Light spot

- response on single laser shot is shown
- signal mainly contains in ~3x3 cluster

A_2/A_1

Ratio of responce to 2nd laser shot to responce to 1st laser shot at high intensities of the laser is smaller than 1 (goes down to about 0.9)

A_2/A_1 as function of A_1

Probably geometrical position of stages was a little bit changed for this run

A_2/A_1 as function of shots frequency

Total signal of the cluster: ~ 1000 CDS (this approximately corresponds to responce to the Fe-55)

Seems, time needed for recovery is about 60-120 ms \rightarrow as predicted by Mimosa experts from Strasbourg

Sensor recovery

There are pits in the next frames after the frame were laser shot was

Amplitude as function of laser position

vertical position of the collimator was changed with step 50 or 25 um

more or less strong dependence appears at distances ~5x larger than width of the epitaxial layer

11 January 2011

Amplitude as function of laser position

Scan sensor, moving laser collimator through the rows within one column; 10 measurements

Strong dependence of the response on the spot position within pixel

Conclusions

- sensor studies with laser give an unique opportunity to know time and geometrical performance
- signal in pixel seems to be very sensitive to the position of the hit (within pixel), $A_{max}/A_{min} \approx 5...6$
- time of reading of one frame is not enough for pixel to recover

Outlook

Short term:

- continue studies with laser
- use optical splitter to monitor laser characteristics independently
- try power pulsing mode with laser
- study higher-resistivity version of the Mimosa 26
- get digital readout

Longer term:

- digital readout in power pulsing mode
- power pulsing of Mimosa 28
- power pulsing of full ladder
- study chip performance in strong magnetic fields

Thanks to:

Lena Bachynska

Artem Kravchenko

Backup

