

BNG - Babcock Noell GmbH, Magnet Technology

Dipl.-Phys. Michael Gehring,

3rd ASPERA Technology Forum, Darmstadt, 13/14.03.2012

Babcock Noell GmbH

page 2

Babcock Noell: Member of Bilfinger Berger SE

Bilfinger Berger SE

Industrial Services

Power Services

Building and Facility Services

Construction

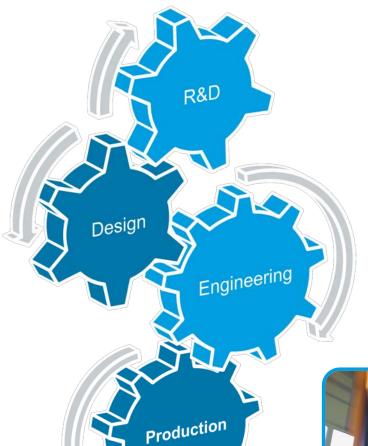
Concessions

Babcock Noell GmbH

Nuclear Services Nuclear

Nuclear Technologies

Magnet Technologies



Environmental Technologies

We are Magnet Technology

- Physicists, Engineers and Technicians work hand-in hand
- More than 30 years magnet technology experience
- Cooperation with research institutions
- Other promise the future We work on it!!

Components: COLDDIAG

Flexible engineering design → Installation in different synchrotron light sources

UHV: ~5 * 10 -10 mbar in the cold

Cold vacuum chamber for diagnostics

Measuring of the beam heat load to a cold
bore

Retarding field analysers

Temperature sensors

Pressure gauges & mass spectrometers

Components: Potential Breaks

10 ⁻⁹ mbar I/ s at RT Helium leakage rate Up to 35 kV operating voltage

Electrical seperatation of high pressure cooling channels for liquid He Good HV-capability, outstanding pressure tightness for He even after numerous thermal cycles

Operating temperature 4.2 K

Operating pressure up to 25 bar

Maximum pressure 200 bar

Cool down rate 30 K/h

FAIR, ITER, ITER-TFMC, Nb₃Sn- Dipole, W7-X

Functional Systems: Superconducting Undulators, SCU15 NbTi

Flexible Beam Pipe ~ 5 * 10 -10 mbar

Cryogen free system, end field correction, local shimming, integral field compensation

Conductor (insulated) NbTi, 0.34 x 0.54 mm

Period length 15 mm

Active length 1,500 mm

Dimensions of gap 5 mm to 8 mm

Magnetic field 1.5 T on axis with

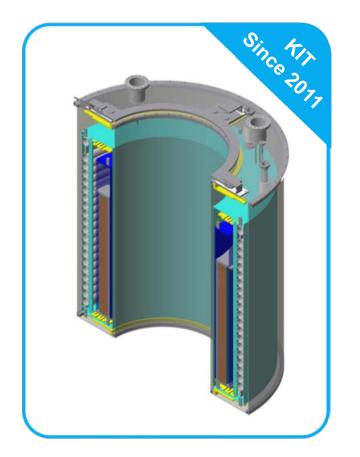
5 mm gap

Design beam heat load 4 W

Insulation vacuum 10 ⁻⁵ mbar

Numbers of cryocoolers 4

Operating temperature 4.2 K



Functional Systems: VATESTA

Bath cooled solenoid

Diameter bore	800 mm
Conductor	NbTi
Central magnetic field	5 T
Field homogeneity	4.78% by radial <200 mm, axial <100mm from the central axis
Operating current	< 175 A
Operating temperature	4.5 K

Functional Systems: Solenoids for Spin-Echo Spectrometer (NSE)

Active shielding Coil position accurate to 2 µm

2 superconducting solenoid systems for the Spin-Echo Spectrometer, Spallation Neutron Source, USA

Conductor NbTi, Ø 0,5 mm²

Magnetic field 1.4 T

Operating temperature 4 K cryogen-free

Operating current 250 A

Small series: In-vessel saddle coils for ASDEX Upgrade

3D shaped coils

UHV specified: 10⁻⁹ mbar

UHV measured: ~ 5*10 -10 mbar

Conductor Hollow copper (9 mm x 9 mm)

Dimension 1,300 mm x 450 mm

Operating current 1,000 A AC, DC

Magnetic field 3.9 T

Large Projects: SIS 100 Dipols for the FAIR Project

Fast ramping → 4 T/s

113 fast ramped magnets with a superferric design

Conductor NbTi

Length ~ 3 m

Magnetic Field 1.9 T

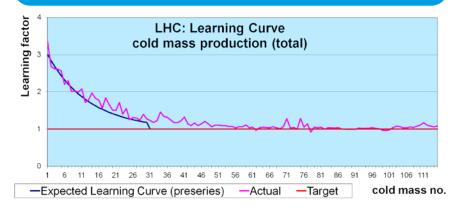
Large Scale Projects: Wendelstein 7-X

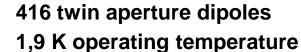
50 non-planar coils

NbTi, extruded conduit, 17.6 A

Dimension 3 m x 2.5 m x 1 m Total weight 6, 000 kg

Magnetic field 6 T





Large Scale Projects: Dipoles for Large Hadron Collider

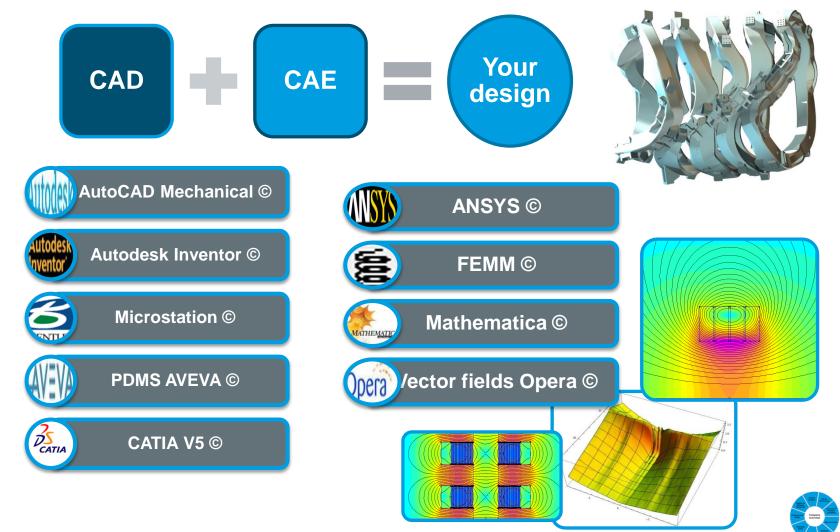
Up to 4 magnets per week Delivery 7 month ahead of schedule

Overall length: 15 m

Total weight 30,000 kg

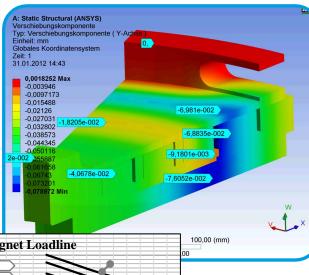
Magnetic field 8.33 T

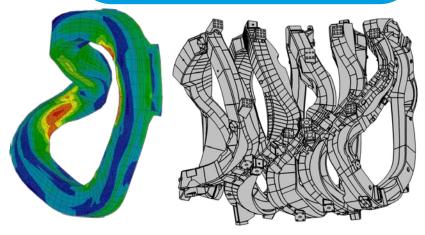
Operating current 11.8 kA

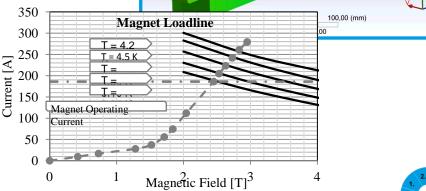


Software – Capabilities

Technology: Calculation and Design


Calculations


- ➤ Dynamic
- **≻**Electromagnetic
- ➤ Mulitphysics (Coupled Problems)
- > Structrual
- >Thermal


Design

> 2 D

> 3 D

Technology: Cryotechnique

Bath cooled

Forced Flow

LHC

CICC: W7-X

Nuclotron-Cable: SIS100

Conduction cooled

Undulator

NSE

Production according to the Pressure Vessel Regulation 97/23/EG

3rd ASPERA Technology Forum, Darmstadt, 13/14.03.2012

Technologies: Welding

Welding Process and Material Thickness

TIG (Tungsten-Inert-Gas) MAG (Metal Active Gas)

LB-MAG

1 – 60 mm

1 – 40 mm

3 – 25 mm

Welding Base Material

Austenitic Steel Nickel-Basic Steels

C-Steels

Technologies: Soldering and Brazing

Soldering Process

Brazing Process

Soldering with local heating

0.5 – 4 mm

Induction Soldering

0.5 – 4 mm

Cu-Cu, brass-Cu,

Brazing with local heating

1 – 4 mm

mm 1 – 4 mm

Furnace

Brazing

Technologies: Tests and Measurements

Impulsed Voltage Generator

Layer thickness test

Permeability measurements

Surface roughness measurement

Non Destructive Test

Visual Test (VT)
Penetrant Test (PT)
Leak Test (LT)
Helium-LT (10⁻¹⁰ mbar I/s),
Bubble-LT (10⁻³ mbar I/s)
Radiographic Test (RT, X-Ray, LinAc)
Ultrasonic Test (UT)
Magnet powder Test (MT)
Hardness test (HT, Wickens)

Geometrical measurements

Lasertracker Faro-Arm

Certified Quality and Safety

Environmental Management System ISO 14001:2004

Information Security Management System ISO 27001

Quality Management ISO 9001:2008

Safety Checklist Contractor (SCC)

Environmental Management System ISO 14001:2004

Occupational Health and Safety Management System BS

OHSAS 18001:2007

Specialised company according to German Water

Resources Act (WHG)

Distinguished Quality

Golden Hadron Award

AREVA OL3 Safety Award (HSE)

Best result for suppliers: "TOP AREVA SUPPLIER"

Thank you for your attention !

QUESTIONS?

Babcock Noell GmbH

Alfred Nobel Strasse 20 97080 Würzburg, Germany

Phone: +49 931 9030

Fax: +49 931 9036000

info@babcocknoell.de www.babcocknoell.de

Registered at Local Court Würzburg, Commercial Register HRB7156 VAT-Id. No.: DE211420259

Management: Dr. Ronald Hepper Peter Stephan Helmut Welp