Backgrounds for Heterotic Moduli Stabilization

James Gray, LMU, Munich

with M. Larfors And D. Lüst: arXiv: I 205.6208 with L.Anderson, A. Lukas and B. Ovrut: arXiv: I I07.5076 1010.0255 and to appear.

SU(3) Structure Backgrounds:

- Consider compactification on a six manifold admitting an $\mathrm{SU}(3)$ structure.

Torsion classes:

$$
\begin{aligned}
& d J=-\frac{3}{2} \operatorname{Im}\left(W_{1} \bar{\Omega}\right)+W_{4} \wedge J+W_{3} \\
& d \Omega=W_{1} J \wedge J+W_{2} \wedge J+\bar{W}_{5} \wedge \Omega
\end{aligned}
$$

- SU(3) Holonomy: Calabi-Yau $W_{i}=0 \forall i$
- SU(3) Structure $\mathcal{N}=1$ vacuum: Strominger System

$$
W_{1}=W_{2}=0 \quad W_{4}=\frac{1}{2} W_{5}=d \hat{\phi} \quad \text { Lopes et al: hep-th/02।|।|8 }
$$

- $\operatorname{SU}(3)$ Structure $\mathcal{N}=1 / 2$ vacuum: Generalized half-flat
$W_{1-}=W_{2-}=0 \quad W_{4}=\frac{1}{2} W_{5}=d \hat{\phi} \quad$ Lukas et al: hep-th/1005.5302

We will add extra fluxes to the analysis, and provide solutions for the supergravity fields.

The setup:

Metric and associated field ansatzes

$$
\begin{aligned}
& d s_{10}^{2}=e^{2 A\left(x^{m}\right)}\left(d s_{3}^{2}+e^{2 \Delta\left(x^{u}\right)} d y d y+g_{u v}\left(x^{m}\right) d x^{u} d x^{v}\right) \\
& H_{\alpha \beta \gamma}=f \epsilon_{\alpha \beta \gamma} \quad H_{\alpha m n}=H_{\alpha \beta n}=0 \quad \partial_{\alpha} \hat{\phi}=0
\end{aligned}
$$

- Three dimensional space is maximally symmetric.
- New fluxes: f and $H_{y u v}$
- Gravitino variation in x^{α} directions

$$
\Longrightarrow A\left(x^{m}\right)=\text { constant }
$$

- Define $\Theta=d \Delta$

The Killing spinor equations and Bianchi Identities become...

Consistency at fixed y

$$
\begin{gathered}
J \wedge d J=J \wedge J \wedge d \hat{\phi}, \quad d \Omega_{-}=2 d \hat{\phi} \wedge \Omega_{-}-e^{-\Delta} * H_{y}-\frac{1}{2} f J \wedge J, \\
0=\frac{1}{2} * f-\Omega_{+} \wedge H-\frac{1}{2} e^{-\Delta} H_{y} \wedge J \wedge J, e^{\Delta} * d \hat{\phi}=\frac{1}{2} H_{y} \wedge \Omega_{-}-\frac{1}{2} e^{\Delta} H \wedge J, \\
d H=0, d\left(* e^{-2 \hat{\phi}-\Delta} H_{y}\right)=0, \quad d f=0
\end{gathered}
$$

Flow eqns

$$
\begin{gathered}
J \wedge J^{\prime}=e^{\Delta} d \Omega_{+}-\frac{1}{2} e^{\Delta} *\left(H \wedge \Omega_{-}\right) J \wedge J-2 e^{\Delta} d \hat{\phi} \wedge \Omega_{+}-e^{\Delta} \Omega_{+} \wedge \Theta \\
\Omega_{-}^{\prime}=e^{\Delta} d J-e^{\Delta} *\left(H \wedge \Omega_{-}\right) \Omega_{-}-2 e^{\Delta} d \hat{\phi} \wedge J+e^{\Delta} J \wedge \Theta-* H e^{\Delta}-f e^{\Delta} \Omega_{+} \\
\hat{\phi}^{\prime}=-\frac{1}{2} e^{\Delta} *\left(H \wedge \Omega_{-}\right) \\
H^{\prime}=d H_{y}, \quad\left(* e^{-2 \hat{\phi}-\Delta} H_{y}\right)^{\prime}=-d *\left(e^{-2 \hat{\phi}+\Delta} H\right), f^{\prime}=0
\end{gathered}
$$

Rewrite fluxes and y derivatives

Helps with solving equations in a construction independent manner

$$
\begin{array}{rlrl}
H & =A_{1+} \Omega_{+}+A_{1-} \Omega_{-}+A_{2+} \wedge J+A_{3+} \\
H_{y} & =B_{1} J+B_{2}+B_{3+} . \quad \text { such that } & \\
A_{3+} \wedge \Omega_{ \pm} & =0 \\
A_{3+} \wedge J & =0 \\
B_{2} \wedge J \wedge J & =0 .
\end{array}
$$

and write:

$$
\begin{aligned}
J^{\prime}=\gamma_{1} J+\gamma_{2+}+\gamma_{3} & \begin{aligned}
\Omega_{-}^{\prime} & =\alpha_{1+} \Omega_{+}+\alpha_{1-} \Omega_{-}+\alpha_{2+} \wedge J+\alpha_{3}, \\
0 & =\gamma_{2+} \wedge J \wedge J=\gamma_{3} \wedge J \wedge J . \\
\Omega_{+}^{\prime} & =\beta_{1+} \Omega_{+}+\beta_{1-} \Omega_{-}+\beta_{2+} \wedge J+\beta_{3}, \\
0 & =\Omega_{ \pm} \wedge \alpha_{3}=J \wedge \alpha_{3}, \\
0 & =\Omega_{ \pm} \wedge \beta_{3}=J \wedge \beta_{3} .
\end{aligned}
\end{aligned}
$$

- The quantities α, β and γ can easily be found in any given example (see paper for many worked cases).

Solving consistency conditions:

$$
\begin{aligned}
& d \hat{\phi}=W_{4} \\
& H_{y}=e^{\Delta}\left(-f-2 W_{1-}\right) J-e^{\Delta} W_{2-}+\frac{1}{2} e^{\Delta}\left(\left(2 W_{4}-W_{5}\right)\llcorner\bar{\Omega}+\text { c.c })\right.
\end{aligned}
$$

Also specifies some of the components of H

- Setting new fluxes to zero we recover the generalized half-flat conditions

$$
W_{1-}=W_{2-}=0 \quad W_{4}=\frac{1}{2} W_{5}=d \hat{\phi}
$$

In general all but one of these conditions is relaxed.
Solving flow equations:

$$
\begin{aligned}
H=-\frac{1}{2} e^{-\Delta} \hat{\phi}^{\prime} \Omega_{+} & +\left(\frac{7}{8}+\frac{3}{2} W_{1-}\right) \Omega_{-} \\
& +*\left(\left(3 W_{4}-2 W_{5+}\right) \wedge J-W_{3}+e^{-\Delta} \alpha_{3}\right)
\end{aligned}
$$

- We also get equations for the flow itself. For example:

$$
\gamma_{3}=e^{\Delta} W_{2+} \quad \text { and } \quad \alpha_{1+}=-3 e^{\Delta} W_{1-}-\frac{15}{8} e^{\Delta} f
$$

- The explicit expressions for H allow us to check the Bianchi Identities and form field equations of motion trivially in any case.
- The equations for the flow yield the y dependence of the parameters in the $\operatorname{SU}(3)$ structure when used with any explicit construction.

Please see paper for egs: - CY with flux

- Cosets
- Toric varieties (SCTV's)

Calabi-Yau Complex

Structure and Bundles

- Gaugino variations tells us gauge bundle is poly-stable, slope zero and holomorphic:

$$
g^{a \bar{b}} F_{a \bar{b}}=0 \quad F_{\bar{a} \bar{b}}=0=F_{a b}
$$

- Ten dimensional action contains associated terms:

$$
S=-\frac{1}{2 \kappa_{10}^{2}} \alpha^{\prime} \int_{\mathcal{M}_{10}} \sqrt{-g}\left(\frac{1}{2} \operatorname{tr}\left(g^{a \bar{b}} F_{a \bar{b}}\right)^{2}+\operatorname{tr}\left(g^{a \bar{a}} g^{b \bar{b}} F_{a b} F_{\bar{a} \bar{b}}\right)\right)
$$

- Assume we have such a bundle and perturb the complex structure, when can the connection adjust accordingly?

$$
\delta_{\mathfrak{z}}^{I} v_{I[\bar{a}}^{c} F_{|c| \bar{b}]}^{(0)}+2 D_{[\bar{a}}^{(0)} \delta A_{\bar{b}]}=0
$$

Algebraically this was worked out by Atiyah:

- Define a bundle Q :

$$
0 \rightarrow V \otimes V^{*} \rightarrow Q \rightarrow T X \rightarrow 0
$$

- Atiyah shows that the combined moduli of the holomorphic bundle are given by $H^{1}(Q)$, not $H^{1}(T X)$ and $H^{1}\left(V \otimes V^{*}\right)$.
- From the associated long exact sequence:
$0 \rightarrow H^{1}\left(V \otimes V^{*}\right) \rightarrow H^{1}(Q) \rightarrow H^{1}(T X) \xrightarrow{\alpha} H^{2}\left(V \otimes V^{*}\right)$
where $\alpha=[F]$
- Thus: $H^{1}(Q)=H^{1}\left(V \otimes V^{*}\right) \oplus \operatorname{Ker}(\alpha)$
- This should be compared to the differential expression on the previous slide.

Problem:All this analysis requires that you know a starting point to fluctuate around!

- We would like instead a way of describing the moduli space, and its properties, globally. Which loci are we restricted to in complex structure moduli space?
- To make things more explicit we move to an example:

Manifold: $\quad X=\left[\begin{array}{l|l}\mathbb{P}^{1} & 2 \\ \mathbb{P}^{1} & 2 \\ \mathbb{P}^{1} & 2 \\ \mathbb{P}^{1} & 2\end{array}\right] / \mathbb{Z}_{2} \times \mathbb{Z}_{4}$
Bundle:
$0 \rightarrow \mathcal{L} \rightarrow V \rightarrow \mathcal{L}^{*} \rightarrow 0$
where $\quad \mathcal{L}=\mathcal{O}(-2,-2,1,1)$

- Bundle is controlled by $H^{1}\left(X, \mathcal{L}^{2}\right)$
- This vanishes generically
- But can jump to a non-zero value on special loci in complex structure moduli space.
- Loci in complex structure where bundle support jumps is where you get stabilized to.

Complex structure dependence of the controlling cohomology:

Koszul: $\left.\quad 0 \rightarrow \mathcal{N}^{*} \otimes \mathcal{L}^{2} \rightarrow \mathcal{L}^{2} \rightarrow \mathcal{L}^{2}\right|_{X} \rightarrow 0$
where: $\quad \mathcal{N}=\mathcal{O}(2,2,2,2)$
Tells us:
$0 \rightarrow H^{1}\left(\left.\mathcal{L}^{2}\right|_{X}\right) \rightarrow H^{2}\left(\mathcal{N}^{*} \otimes \mathcal{L}^{2}\right) \xrightarrow{p} H^{2}\left(\mathcal{L}^{2}\right) \rightarrow H^{2}\left(\left.\mathcal{L}^{2}\right|_{X}\right) \rightarrow 0$

- Source and target spaces are described in terms of polynomials in ambient space coordinates.
- Map p is complex structure dependent degree $(2,2,2,2)$ polynomial - the defining relation!
- Procedure:
- Take a general element of the source: $\sum_{i} b_{i} S^{i}$
- and a general defining relation: $\sum_{a} c_{a} p^{a}$
- Ask that the product of the two vanishes in the target polynomial space:

$$
\sum_{a, i} \lambda^{i a} b_{i} c_{a}=0
$$

- We want to know the stabilized loci in complex structure moduli space:
- Primary decompose to obtain one equation for each locus in combined complex structure "bundle" modulus space.
- Perform elimination (projection) to the complex structure moduli space for each piece.

25 distinct interesting loci:

We must also check the smoothness of the CY on each locus.

Dim.	Num.
7	2
5	2
4	3
3	4
2	6
1	5
0	3

- In this case only one of the loci is smooth.
- Many have point like singularities on the CY may ask if they can be resolved
- Answer is definitely yes, at least for some of them.

Dim.	Num.	Sing.
7	2	0
5	2	0
4	2	0
4	1	-1
3	2	0
3	2	1
2	5	0
2	1	2
1	3	0
1	2	2
0	3	2

Complete description of stable loci in c.s. moduli space

Summary

- $\mathrm{SU}(3)$ structure backgrounds:
- Showed how to generalise the torsion classes giving rise to a good heterotic background.
- Gave explicit solutions for supergravity fields: especially important for solving Bianchi Identities.
- Calabi-Yau complex structure stabilization:
- Reviewed the basic mechanism.
- Described the problem of knowing where to start the standard fluctuation analysis for stability of the vacuum.
- Showed how to algorithmically map out the vacua in complex structure moduli space.

