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SU(3) Structure Backgrounds:

• SU(3) Holonomy: Calabi-Yau

• SU(3) Structure           vacuum: Strominger System 

• SU(3) Structure               vacuum: Generalized half-flat

N = 1

Wi = 0 ∀ i

N = 1/2

W1− = W2− = 0

W4 =
1

2
W5 = dφ̂

where η± are the components of the seven-dimensional spinor η of definite six-dimensional chirality.
It is straightforward to show that J and Ω thus defined obey the orthogonality relation

J ∧ Ω = 0 . (2.16)

Given these definitions, and our metric ansatz (2.2), we may relate the forms of the G2 and SU(3)
structures [19]

ϕ = e∆dy ∧ J + Ω− (2.17)

Φ = e∆dy ∧Ω+ +
1

2
J ∧ J . (2.18)

The equations (2.12) determining the seven-dimensional G2 structure can then be written

J ∧ dJ = J ∧ J ∧ dφ̂ (2.19)

dJ = e−∆Ω′
− − 2e−∆φ̂′Ω− + 2dφ̂ ∧ J − J ∧Θ+ ∗H + f Ω+ (2.20)

dΩ+ = e−∆J ∧ J ′ − e−∆φ̂′J ∧ J + 2dφ̂ ∧ Ω+ +Ω+ ∧Θ (2.21)

dΩ− = 2dφ̂ ∧ Ω− − e−∆ ∗Hy −
1

2
fJ ∧ J (2.22)

0 =
1

2
∗ f − Ω+ ∧H − e−∆ 1

2
Hy ∧ J ∧ J (2.23)

e−∆ ∗ φ̂′ = −1

2
H ∧ Ω− (2.24)

e∆ ∗ dφ̂ =
1

2
Hy ∧ Ω− − 1

2
e∆H ∧ J . (2.25)

In the above d denotes the exterior derivative in six dimensions, and a prime indicates a derivative
with respect to y, the coordinate normal to the domain wall. Moreover, Θ = d∆, Hodge stars are
taken with respect to the six-dimensional metric and Ω+ and Ω− are the real and imaginary parts
respectively of the three form Ω. The field H is the three form corresponding to Ĥ with all of its
indices lying on the six-dimensional compact manifold, whereas Hy is a two form corresponding to
Ĥ with its first index pointing in the normal direction to the domain wall.

It is important to note that the forms J and Ω are not, in general, closed. The degree to which
they fail to be so is classified by the torsion classes of the SU(3) structure [6, 19]

dJ = −3

2
Im(W1Ω) +W4 ∧ J +W3 (2.26)

dΩ = W1J ∧ J +W2 ∧ J +W 5 ∧Ω . (2.27)

The above can be taken as a definition of the torsion classes Wi given that they are also defined to
have the primitivity properties

W3 ∧ J = W3 ∧ Ω = W2 ∧ J ∧ J = 0 . (2.28)

Moreover, W2 is a complex (1, 1) form, W3 is a real (2, 1) + (1, 2)-form, W4 is a real one-form, and
W5 is a complex (1, 0)-form. For a nice discussion of this structure, see [20].
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W1 = W2 = 0

• Consider compactification on a six manifold 
admitting an SU(3) structure.

Torsion classes:

W4 =
1

2
W5 = dφ̂

Lopes et al: hep-th/0211118

Lukas et al: hep-th/1005.5302



Fibration with manifold of SU(3) structure

3D maximally symmetric spaceDomain wall direction y xα

xu

{xm} = {xu, y}

We will add extra fluxes to the analysis, and provide 
solutions for the supergravity fields.

The setup:



2 Ansatz and equation system

We wish to study solutions of heterotic string theory which take the form of a warped product of
a manifold admitting an SU(3) structure and a four-dimensional domain wall. In addition we will
require these solutions to preserve a number of supercharges corresponding to N = 1/2 supersym-
metry in four dimensions. Given this, the first equations for us to study are the supersymmetry
variations of the gravitino and dilatino in ten dimensions (solutions in this paper will be to lowest
order in α′ and thus will not involve gauge fields)

δψM =

(
!M +

1

8
ĤM

)
ε (2.1)

δλ =

(
/!φ̂+

1

12
Ĥ
)
ε .

Here, hatted quantities indicate ten-dimensional supergravity fields, ĤM = ĤMNPΓNP and Ĥ =
ĤMNPΓMNP and we are searching for backgrounds such that these variations are zero for two
supercharges ε. Given our interest in domain wall solutions, we make the following ansatz for the
metric

ds210 = e2A(xm)
(
ds23 + e2∆(xu)dydy + guv(x

m)dxudxv
)

. (2.2)

Here ds23 corresponds to any maximally symmetric space for the world volume of the domain wall,
the coordinates xm include the six-dimensional coordinates and the domain wall direction and the
coordinates xu are those on the manifold of SU(3) structure. The coordinate y is normal to the
domain wall and we denote coordinates on the domain wall world volume by xα. In order to preserve
the maximal symmetry of the this world volume we make the ansatzes ∂αφ̂ = 0 and Ĥαβγ = fεαβγ
where f is some function and εαβγ is the volume form on the world volume. We also allow Ĥymn to
be arbitrary and insist that Hαmn = Hαβn = 0 , to be consistent with our symmetry requirements.
The system considered by Lukas and Matti [15] can be recovered by taking the special case where
the domain wall is Minkowski space, and by setting Hymn and f to zero.

To analyse the Killing spinor equation (2.1), we must make an ansatz for the spinor ε which is
compatible with the form of our metric (2.2). Following the notation of [15], we write

ε(xα, xm) = ρ(xα)⊗ η(xm)⊗ θ . (2.3)

Here ρ is the standard covariantly constant spinor on the Minkowski or anti de Sitter (AdS) world
volume of the domain wall, η is a seven-dimensional Majorana spinor on the seven-dimensional space
composed of the normal direction to the domain wall and the compact six-dimensional manifold and
θ is an eigenvector of the third Pauli matrix. The spinor ρ has two components and corresponds to
the two conserved supercharges which we wish to obtain in four or three dimensions. For later use
we also note that we will sometimes split η up in terms of two six-dimensional spinors of definite
chirality

η =
1√
2
(η+ + η−) . (2.4)

Given the above ansatzes, (2.2) and (2.3), one may compute the components of the gravitino
variation (2.1) in the domain wall direction. One then finds that ∂mA = 0. Since this warp factor is
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Ĥ
)
ε .

Here, hatted quantities indicate ten-dimensional supergravity fields, ĤM = ĤMNPΓNP and Ĥ =
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Metric and associated field ansatzes

• Three dimensional space is maximally symmetric.

• New fluxes:      and 

• Gravitino variation in       directions

• Define 

Hαβγ = f�αβγ

f Hyuv

The Killing spinor equations and Bianchi Identities become...

Θ = d∆

xα

=⇒ A(xm) = constant



J ∧ dJ = J ∧ J ∧ dφ̂ , dΩ− = 2dφ̂ ∧ Ω− − e
−∆ ∗Hy −

1

2
fJ ∧ J ,

0 =
1

2
∗ f − Ω+ ∧H − 1

2
e
−∆

Hy ∧ J ∧ J , e
∆ ∗ dφ̂ =

1

2
Hy ∧ Ω− − 1

2
e
∆
H ∧ J ,

dH = 0 , d(∗e−2φ̂−∆
Hy) = 0 , df = 0

Consistency at fixed y

φ̂� = −1

2
e
∆ ∗ (H ∧ Ω−)

Ω�
− = e

∆
dJ − e

∆ ∗ (H ∧ Ω−)Ω− − 2e∆dφ̂ ∧ J + e
∆
J ∧Θ− ∗He

∆ − fe
∆Ω+

J ∧ J
� = e

∆
dΩ+ − 1

2
e
∆ ∗ (H ∧ Ω−)J ∧ J − 2e∆dφ̂ ∧ Ω+ − e

∆Ω+ ∧Θ

H
� = dHy , (∗e−2φ̂−∆

Hy)
� = −d ∗ (e−2φ̂+∆

H) , f
� = 0

Flow eqns

reduces correctly to previous cases.



3 The most general flux and domain wall dependence

In the previous section we have given the equations which must be solved to find N = 1/2 domain
wall solutions of heterotic string theory. In this section we detail expansions which can be made,
without loss of generality, for the supergravity fields and their derivatives. These expansions are in
terms of quantities associated with the SU(3) structure of the six-dimensional compact space and
will facilitate the analysis of these equations in the next section.

3.1 Neveu-Schwarz flux

We begin by considering the three form field strength H and the two form field strength Hy. Mani-
folds admitting an SU(3) structure are almost complex, and thus any form can be decomposed with
respect to its index structure. We can, in complete generality, write H and Hy, which are a priori
arbitrary three and two forms respectively, in the following manner

H = A1+Ω+ +A1−Ω− +A2+ ∧ J +A3+ (3.1)

Hy = B1J +B2 +B3+ .

Here A1±, B1 are real functions, A2+ is the real part of a (1,0)-form, A3+ is the real part of a (2,1)-
form, B2 is a (1,1)-form and B3+ is the real part of a (2,0)-form. These forms can be chosen to obey
the primitivity relations

A3+ ∧ Ω± = 0 (3.2)

A3+ ∧ J = 0 (3.3)

B2 ∧ J ∧ J = 0 . (3.4)

In imposing these conditions, we have used the uniqueness of the volume form and the holomorphic
top-form, and the freedom to choose A1+Ω+∧Ω− = H ∧Ω−, A1−Ω−∧Ω+ = H ∧Ω+, B1J ∧J ∧J =
H ∧J ∧J and A2+ = 1

4J!H given the initially unspecified nature of A3+, B2 and B3+.4 In addition,
this choice of A2+ ensures that J!A3+ = 0.

Given the expansion (3.1) for H and Hy, the six-dimensional Hodge duals of these quantities are
readily computed using identities in appendix A

∗H = −A1+Ω− +A1−Ω+ −A2− ∧ J + ∗A3+ (3.5)

∗Hy =
1

2
B1J ∧ J −B2 ∧ J + ∗B3+ , (3.6)

where, as a consequence of A3+ ∧ Ω± = 0 and J!A3+ = 0,

Ω± ∧ ∗A3+ = J ∧ ∗A3+ = 0 . (3.7)

We keep ∗B3+ as it is for future convenience - in the following, we only need to know that ∗B3+ is
the real part of a (1,3)-form.

4Note that B3+ ∧ J ∧ J = 0 is trivially true by index structure arguments.
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3.2 Domain wall dependence

We wish to write down a decomposition for the domain wall dependence (y derivatives) of the forms
defining the SU(3) structure, J and Ω, similar to that given for the flux in the proceeding subsection.
In general it may be possible to deform a given SU(3) structure in many ways while preserving the
conditions Ω ∧ J = 0 and J ∧ J ∧ J = 3

4 iΩ ∧ Ω. The parameters associated to these deformations,
which one might think of as the “moduli of the SU(3) structure” in some sense (although of course
what constitutes a physical modulus can only be decided once a consistent background solution has
been discovered), are what can be allowed to vary with the domain wall direction y. This freedom
in the SU(3) structure induces a y dependence of J and Ω. Using arguments similar to those in the
previous subsection for the flux, we may, without sacrificing any generality, decompose J ′ as follows

J ′ = γ1J + γ2+ + γ3 (3.8)

0 = γ2+ ∧ J ∧ J = γ3 ∧ J ∧ J . (3.9)

Here γ2+ is the real part of a (2,0) form and γ3 is a (1,1) form.
For the three form of the SU(3) structure we may write,

Ω′
− = α1+Ω+ + α1−Ω− + α2+ ∧ J + α3 , (3.10)

Ω′
+ = β1+Ω+ + β1−Ω− + β2+ ∧ J + β3 , (3.11)

0 = Ω± ∧ α3 = J ∧ α3 , (3.12)

0 = Ω± ∧ β3 = J ∧ β3 . (3.13)

where we have chosen α2+ = 1
4J!Ω

′
−, so that J!α3 = 0.

In any given case one can compute the coefficients above, α, β and γ, straightforwardly in terms
of the SU(3) structure parameters (which one allows to be y dependent). In many cases one may
not know all of the possible deformations of the SU(3) structure which is under consideration (there
are an infinite number of such deformations). In such a case one can proceed by simply including all
deformations which are known and considering a restricted case. In section 4.3 we consider a set of
deformations which are always possible in the case of any known SU(3) structure.

Taking the y-derivative of the SU(3) structure conditions we get consistency conditions, which
will automatically be satisfied in any real example. These provide a useful check of calculations and
can also be used in performing general analyses without referring to a specific Ω and J :

(J ∧ Ω)′ = 0 =⇒ γ2+ ∧ Ω = −(iα2+ + β2+) ∧ J ∧ J (3.14)

(J ∧ J ∧ J)′ =
3

4
i(Ω ∧Ω∗)′ =⇒ γ1 =

1

3
(β1+ + α1−) . (3.15)

4 Analysis of the system, consistency relations and flux solution

In this section we analyse the possible solutions of the equations presented in Section 2, using the
decompositions presented in Section 3, in complete generality. By substituting our decomposition
of the flux and the domain wall dependence of the SU(3) structure forms into the supersymmetry
conditions (2.19)-(2.25), we derive three different types of conditions. Firstly, we obtain constraints
on the SU(3) structure itself which are required to be satisfied if the system is ever to solve the
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Rewrite fluxes and    derivativesy

Helps with solving equations in a construction independent 
manner

such that

and write:

• The quantities    ,     and     can easily be found in any 
given example (see paper for many worked cases).

α β γ



Solving consistency conditions:

dφ̂ = W4

Hy = e
∆(−f − 2W1−)J − e

∆
W2− +

1

2
e
∆((2W4 −W5)�Ω+ c.c)

Also specifies some of the components of H

• Setting new fluxes to zero we recover the generalized 
half-flat conditions

W1− = W2− = 0 W4 =
1

2
W5 = dφ̂

Solving flow equations:

H = −1

2
e
−∆φ̂�Ω+ + (

7

8
+

3

2
W1−)Ω−

+ ∗ ((3W4 − 2W5+) ∧ J −W3 + e−∆α3)

In general all but one of these conditions is relaxed.



• We also get equations for the flow itself. 
For example:

γ3 = e∆W2+ α1+ = −3e∆W1− − 15

8
e∆fand

• The explicit expressions for H allow us to check the 
Bianchi Identities and form field equations of motion 
trivially in any case.

• The equations for the flow yield the     dependence of the 
parameters in the SU(3) structure when used with any 
explicit construction.

y

Please see paper for egs: - CY with flux

- Cosets

- Toric varieties (SCTV’s)



Calabi-Yau Complex 
Structure and Bundles
• Gaugino variations tells us gauge bundle is poly-stable, slope 

zero and holomorphic:

• Ten dimensional action contains associated terms:

• Assume we have such a bundle and perturb the complex 
structure, when can the connection adjust accordingly?

S = − 1

2κ2
10

α�
�

M10

√
−g

�
1

2
tr(gab̄Fab̄)
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(0)
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Fāb̄ = 0 = Fabgab̄Fab̄ = 0



H
1(Q) = H

1(V ⊗ V
∗)⊕Ker(α)

• From the associated long exact sequence:

• Thus:

• This should be compared to the differential expression on 
the previous slide.

Algebraically this was worked out by Atiyah:

• Define a bundle     :

• Atiyah shows that the combined moduli of the 
holomorphic bundle are given by          , not          
and                   .

0 → V ⊗ V ∗ → Q → TX → 0

α = [F ]

Q

H
1(Q)

H
1(V ⊗ V

∗)
H

1(TX)

0 → H
1(V ⊗ V

∗) → H
1(Q) → H

1(TX)
α−→ H

2(V ⊗ V
∗)

where



Problem: All this analysis requires that you 
know a starting point to fluctuate around!

• We would like instead a way of describing the moduli 
space, and its properties, globally. Which loci are we 
restricted to in complex structure moduli space?

• To make things more explicit we move to an example:

X =





P1 2
P1 2
P1 2
P1 2



 /Z2 × Z4

0 → L → V → L∗ → 0

L = O(−2,−2, 1, 1)

Manifold:

Bundle:

where

(10 complex struct.)



• Bundle is controlled by 

- This vanishes generically

- But can jump to a non-zero value on special loci 
in complex structure moduli space.

- Loci in complex structure where bundle support 
jumps is where you get stabilized to.

H
1(X,L2)

Complex structure dependence of the controlling 
cohomology:

0 → N ∗ ⊗ L2 → L2 → L2|X → 0

N = O(2, 2, 2, 2)

Koszul:

where:
Tells us:

0 → H
1(L2|X) → H

2(N ∗ ⊗ L2)
p−→ H

2(L2) → H
2(L2|X) → 0



• Source and target spaces are described in terms of 
polynomials in ambient space coordinates.

• Map    is complex structure dependent degree (2,2,2,2) 
polynomial - the defining relation!

• Procedure:

- Take a general element of the source:

- and a general defining relation:

- Ask that the product of the two vanishes in the 
target polynomial space:

Algebraic variety for vacuum space.
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• We want to know the stabilized loci in complex structure 
moduli space:

- Primary decompose to obtain one equation for each 
locus in combined complex structure “bundle” 
modulus space.

- Perform elimination (projection) to the complex 
structure moduli space for each piece.

25 distinct interesting loci:
Dim. Num.
7 2
5 2
4 3
3 4
2 6
1 5
0 3

We must also check the 
smoothness of the CY on 
each locus.



Dim. Num. Sing.
7 2 0
5 2 0
4 2 0
4 1 -1
3 2 0
3 2 1
2 5 0
2 1 2
1 3 0
1 2 2
0 3 2

• In this case only one of 
the loci is smooth.

• Many have point like 
singularities on the CY - 
may ask if they can be 
resolved

• Answer is definitely yes, 
at least for some of 
them.

Complete description of stable loci in c.s. moduli space



Summary
• SU(3) structure backgrounds:

- Showed how to generalise the torsion classes giving 
rise to a good heterotic background.

- Gave explicit solutions for supergravity fields: 
especially important for solving Bianchi Identities.

• Calabi-Yau complex structure stabilization:

- Reviewed the basic mechanism.

- Described the problem of knowing where to start 
the standard fluctuation analysis for stability of the 
vacuum.

- Showed how to algorithmically map out the vacua in 
complex structure moduli space.


