## Phenomenological Heterotic Theory:

Standard Models, the Renormalization Group

## And All That

String Phenomenology 2012
Theory Institute, CERN
July2-20, 2012

## Smooth Heterotic Compactifications

- SU(4) Heterotic Standard Models
$D=10, \quad g_{M N}, \quad A_{M}^{a}, E_{8}$

$\mathbb{R}^{4}$ Theory Gauge Group:
$G=\operatorname{SU}(4) \Rightarrow E_{8} \rightarrow \operatorname{Spin}(10)$

Choose the $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ Wilson lines to be Braun, He, Ovrut, Pantev 2006

$$
\chi_{Y}=e^{i Y_{Y} \frac{2 \pi}{3}}, \quad \chi_{B-L}=e^{i Y_{B-L} \frac{2 \pi}{3}}
$$

where

$$
Y_{Y}=6 Y, \quad Y_{B-L}=3(B-L)
$$

$\Rightarrow$

$$
F=\mathbb{Z}_{3} \times \mathbb{Z}_{3} \Rightarrow \operatorname{Spin}(10) \rightarrow S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}
$$

$\mathbb{R}^{4}$ Theory Spectrum:
$n_{r}=\left(h^{1}\left(X, U_{R}(V)\right) \otimes \mathbf{R}\right)^{\mathbb{Z}_{3} \times \mathbb{Z}_{3}} \Rightarrow 3$ families of quarks/leptons

$$
\begin{array}{ll}
Q_{L}=(3,2,1,1), \quad u_{R}=(\overline{3}, 1,-4,-1), \quad d_{R}=(\overline{3}, 1,2,-1) \\
L_{L}=(1,2,-3,-3), e_{R}=(1,1,6,3), \quad \nu_{R}=(1,1,0,3)
\end{array}
$$

and I pair of Higgs-Higgs conjugate fields

$$
H=(1,2,3,0), \quad \bar{H}=(1, \overline{2},-3,0)
$$

under $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}$.

No further vector-like pairs or exotics.
That is, we get exactly the matter spectrum of the MSSM with 3 right-handed neutrinos! In addition, there are
$n_{1}=h^{1}\left(X, V \times V^{*}\right)^{\mathbb{Z}_{3} \times \mathbb{Z}_{3}}=13$ vector bundle moduli $\phi=(1,1,0,0)$
Denote this low energy theory as a B-L MSSM.
Before discussing the hidden sector, we must be more explicit about our Calabi-Yau threefold $X$ and the supersymmetry of the $S U(4)$ vector bundle V . X has the properties

$$
H^{1,1}(X, \mathbb{Z})=\operatorname{span}_{\mathbb{Z}}\left\{\tau_{1}, \tau_{2}, \phi\right\}
$$

with Kahler cone

$$
\mathcal{K}=\left\{T_{1} \tau_{1}+T_{2} \tau_{2}+T_{3} \phi \mid T_{1}, T_{2}, T_{3} \in \mathbb{R}_{>0}\right\}
$$

$\mathrm{SU}(4)$ bundle V has $\mu(V)=0$ and will be "slope stable"
$\Rightarrow$ supersymmetric iff

$$
\begin{aligned}
& 0<T_{1}<T_{2}<\frac{7 T_{1}}{4}, \\
& \frac{4 T_{1}^{2}-6 T_{2} T_{1}-T_{2}^{2}}{6 T_{2}-24 T_{1}}<T_{3}<\frac{T_{1}^{2}+3 T_{2} T_{1}-T_{2}^{2}}{6 T_{2}-6 T_{1}}
\end{aligned}
$$

The region of supersymmetry in the Kahler cone is


## Hidden sector:


$\mathcal{L}=\mathcal{O}_{X}\left(l_{1}, l_{2}, l_{3}\right)$ with the properties

$$
\begin{array}{ll}
l_{1}, l_{2}, l_{3} \text { even } & \Rightarrow \text { admits spinors } \\
l_{1}+l_{2}=0 \bmod 3 & \Rightarrow \text { descends from equivariant bundle }
\end{array}
$$

Conditions $\mathcal{L}$ must satisfy-

- $c_{2}(V)-C h_{2}(\mathcal{L})-c_{2}(T X)+W=0 ; W$ effective $\Rightarrow$ anomaly cancellation
- $c_{1}(\mathcal{L}) \wedge J \wedge J-l^{4} g_{s}^{2} \int_{X} c_{1}(\mathcal{L}) \wedge\left[\left(a c_{1}^{2}(\mathcal{L})+\frac{1}{2} c_{2}(T X)\right)-N_{W}\left(\frac{1}{2}+\lambda\right)^{2} W\right]=0$ with $4 a=\frac{1}{30} \operatorname{tr}_{248}\left(Q_{U(1)}^{2}\right)$

$$
\Rightarrow D^{U(1)}=0
$$

## Lukas, Ovrut, Waldram Blumenhagan, Honecker,Weigand

- $\frac{1}{3 l_{s}^{6} g_{s}^{2}} \int_{X} J^{3}-\frac{1}{l_{s}^{2}} \int_{X} J \wedge\left(-c_{2}(V)+\frac{1}{2} c_{2}(T X)-N_{W}\left(\frac{1}{2}-\lambda\right)^{2} W\right)>0 \Rightarrow \frac{4 \pi}{g_{\operatorname{Spin}(10)}^{2}}>0$
- $\frac{1}{3 l_{s}^{6} g_{s}^{2}} \int_{X} J^{3}-\frac{1}{l_{s}^{2}} \int_{X} J \wedge\left(a c_{1}^{2}(\mathcal{L})+\frac{1}{2} c_{2}(T X)-N_{W}\left(\frac{1}{2}+\lambda\right)^{2} W\right)>0 \Rightarrow \frac{4 \pi}{g_{h i d d e n}^{2}}>0$

Must choose embedding of $U(I)$ into $E_{8}$. Recall

$$
S U(2) \times E_{7} \subset E_{8}
$$

Take

$$
U(1) \subset S U(2) \text { with generator } \operatorname{diag}(1,-1)
$$

Among other things $\Rightarrow a=1$. To get correct $G_{N}$ and $\alpha_{G U T}$ take $g_{s}=20$. Solving all equations gives many solutions. One is

$$
\mathcal{L}=\mathcal{O}_{X}(2,4,2)
$$

valid over a subspace of the Kahler cone given by


## $\mathbb{R}^{4}$ Theory Gauge Group:

$$
G=U(1) \Rightarrow E_{8} \rightarrow U(1) \times E_{7}
$$

$\mathbb{R}^{4}$ Theory Spectrum:


## Analysis of the B-L MSSM

Originally chose the Wilson line generators to be $Y_{Y}, Y_{B-L}$.

However-

$$
\begin{aligned}
\operatorname{Tr}\left(Y_{Y} Y_{B-L}\right)_{\mathfrak{s o}(10)} \neq 0 & \Rightarrow \text { initial } \mathrm{U}(1)_{\mathrm{Y}} \mathrm{U}_{\mathrm{B}-\mathrm{L}} \text { operator mixing } \\
\operatorname{Tr}\left(Y_{Y} Y_{B-L}\right)_{3 \oplus \mathfrak{2} \oplus 1 \oplus 1} \neq 0 & \Rightarrow U(1)_{Y} U_{B-L} \quad \text { mixing } \underline{\text { evolves with scale }}
\end{aligned}
$$

Greatly complicates the RG and low energy analysis!

Question: Are there other inequivalent choices of Wilson lines leading to a B-L MSSM with no $U(I) U(I)$ kinetic mixing?
$\mathfrak{s o}(10)$ Dykin Diagram $\cdot$


First, find the most general element of the Cartan subalgebra $\mathfrak{h} \subset \mathfrak{s o}(10)$ that commutes with $\alpha^{1}, \alpha^{2}, \beta, \alpha^{4}$. The result is

$$
H_{3 \oplus 2}=a\left(H_{1}+H_{2}+H_{3}\right)+b\left(H_{4}+H_{5}\right)
$$

$\Rightarrow$ the elements of $\mathfrak{s o}(10)$ that commute with $\mathfrak{s u}(3)_{C} \oplus \mathfrak{s u}(2)_{L}$ form a two-dimensional subspace $\mathfrak{h}_{2 \oplus 3} \subset \mathfrak{h}$. Any basis is of potential interest.

However,

$$
H_{1}+H_{2}+H_{3}, \quad H_{4}+H_{5}
$$

arise "naturally". We call this the "canonical basis" and explore its properties. One can identify

$$
\begin{aligned}
Y_{B-L} & =2\left(H_{1}+H_{2}+H_{3}\right)=3(B-L) \\
Y_{T_{3 R}} & =H_{4}+H_{5}=2\left(Y-\frac{1}{2}(B-L)\right)=2 T_{3 R}
\end{aligned}
$$

Now choose the $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ Wilson lines to be

$$
\chi_{T_{3 R}}=e^{i Y_{T_{3 R}} \frac{2 \pi}{3}}, \quad \chi_{B-L}=e^{i Y_{B-L} \frac{2 \pi}{3}}
$$

Note that

$$
\chi_{T_{3 R}}^{3}=\chi_{B-L}^{3}=1
$$

$\Rightarrow$

$$
\operatorname{Spin}(10) \rightarrow S U(3)_{C} \times S U(2)_{L} \times U(1)_{T_{3 R}} \times U(1)_{B-L}
$$

## Canonical Spectrum:

The Spin(I0) spectrum is determined from $H^{1}\left(X, U_{R}(V)\right)$.
For $R=16$

$$
H^{1}(X, V)=R G^{\oplus 3}
$$

where

$$
R G=1 \oplus \chi_{1} \oplus \chi_{2} \oplus \chi_{1}^{2} \oplus \chi_{2}^{2} \oplus \chi_{1} \chi_{2} \oplus \chi_{1}^{2} \chi_{2} \oplus \chi_{1} \chi_{2}^{2} \oplus \chi_{1}^{2} \chi_{2}^{2}
$$

and $\quad \chi_{1}=\chi_{T_{3 R}}, \chi_{2}=\chi_{B-L}$. Note that

$$
h^{1}(X, V)=27
$$

$\Rightarrow 2716$ representations. The action of the Wilson lines on each 16 is

$$
\begin{aligned}
16= & \chi_{T_{3 R}}^{2} \cdot \chi_{B-L}^{2}(\overline{3}, 1,-1,-1) \oplus \chi_{T_{3 R}} \cdot \chi_{B-L}^{2}(\overline{3}, 1,1,-1) \\
& \oplus 1 \cdot \chi_{B-L}(3,2,0,1) \oplus 1 \cdot 1(1,2,0,-3) \oplus \chi_{T_{3 R}}^{2} \cdot 1(1,1,-1,3) \\
& \oplus \chi_{T_{3 R}} \cdot 1(1,1,1,3) .
\end{aligned}
$$

Then $\left(H^{1}(X, V) \otimes 16\right)^{\mathbb{Z}_{3} \times \mathbb{Z}_{3}}$ consists of 3 families of quarks/leptons

## each transforming as

$$
\begin{array}{ll}
Q=(U, D)^{T}=(3,2,0,1), \quad u=(\overline{3}, 1,-1,-1), \quad d=(\overline{3}, 1,1,-1) \\
L=(N, E)^{T}=(1,2,0,-3), \quad \nu=(1,1,-1,3), \quad e=(1,1,1,3)
\end{array}
$$

under $S U(3)_{C} \times S U(2)_{L} \times U(1)_{T_{3 R}} \times U(1)_{B-L}$.
For $R=10$

$$
h^{1}\left(X, \wedge^{2} V\right)=4
$$

$\Rightarrow 4 \mathrm{I} 0$ representations. We find that $\left(H^{1}\left(X, \wedge^{2} V\right) \otimes 10\right)^{\varkappa_{3} \times \mathbb{Z}_{3}}$ has I pair of Higgs-Higgs conjugate fields

$$
H=(1,2,1,0), \quad \bar{H}=(1,2,-1,0)
$$

## That is,

- When the two Wilson lines corresponding to the canonical basis are turned on simultaneously, the resulting low energy spectrum is precisely that of the MSSM-that is, three families of quark/lepton chiral superfields, each family with a right-handed neutrino supermultiplet, and one pair of Higgs-Higgs conjugate chiral multiplets. There are no vector-like pairs or exotic particles.

Note in the above analysis that each quark/lepton and Higgs arises from a different 16 or 10 of $\operatorname{Spin}(10)$.

## Canonical Kinetic Mixing:

For arbitrary $U(1)_{1} \times U(1)_{2}$

$$
\mathcal{L}_{\text {kinetic }}=-\frac{1}{4}\left(\left(F_{\mu \nu}^{1}\right)^{2}+2 \alpha F_{\mu \nu}^{1} F^{2 \mu \nu}+\left(F_{\mu \nu}^{2}\right)^{2}+\ldots\right)
$$

For $U(1)_{T_{3 R}} \times U(1)_{B-L},\left(H_{i} \mid H_{j}\right)=\delta_{i j} \Rightarrow$ the "Killing" bracket
$\left(Y_{T_{3 R}} \mid Y_{B-L}\right)=0 \Rightarrow \operatorname{Tr}\left(Y_{T_{3 R}} Y_{B-L}\right)_{\mathfrak{s o}(10)}=0 \quad \Rightarrow \quad$ no initial mixing

- Since the generators of the canonical basis are Killing orthogonal in $\mathfrak{s o}(10)$, the value of the kinetic field strength mixing parameter $\alpha$ must vanish at the unification scale. That is, $\alpha\left(M_{u}\right)=0$.

For arbitrary $U(1)_{1} \times U(1)_{2}$

$$
\mathcal{L}_{\text {kinetic }}=-\frac{1}{4}\left(\left(F_{\mu \nu}^{1}\right)^{2}+2 \alpha F_{\mu \nu}^{1} F^{2 \mu \nu}+\left(F_{\mu \nu}^{2}\right)^{2}+\ldots\right)
$$

with covariant derivative

$$
D=\partial-i T^{1} g_{1} A^{1}-i T^{2} g_{2} A^{2}
$$

Redefining the gauge fields by rotation and rescaling one finds

$$
\left.\mathcal{L}_{\text {kinetic }}=-\frac{1}{4}\left(\left(\mathcal{F}_{\mu \nu}^{1}\right)^{2}\right) \stackrel{\downarrow}{+}\left(\mathcal{F}_{\mu \nu}^{2}\right)^{2}\right)
$$

with the covariant derivative in the "upper triangular" form

$$
\begin{gathered}
D=\partial-i\left(T^{1}, T^{2}\right)\left(\begin{array}{cc}
\mathcal{G}_{1} & \mathcal{G}_{M} \\
0 & \mathcal{G}_{2}
\end{array}\right)\binom{\mathcal{A}^{1}}{\mathcal{A}^{2}} \\
\mathcal{G}_{1}=g_{1}, \quad \mathcal{G}_{2}=\frac{g_{2}}{\sqrt{1-\alpha^{2}}}, \quad \mathcal{G}_{M}=\frac{-g_{1} \alpha}{\sqrt{1-\alpha^{2}}}
\end{gathered}
$$

That is, kinetic mixing reappears as an off-diagonal $\mathcal{G}_{M}$ in the covariant derivative. Note that

$$
\alpha \rightarrow 0 \quad \Rightarrow \quad \mathcal{G}_{2} \rightarrow g_{2}, \quad \mathcal{G}_{M} \rightarrow 0
$$

The RGE for $\mathcal{G}_{M}$ is

$$
\frac{d \mathcal{G}_{M}}{d t}=\frac{1}{16 \pi^{2}} \beta_{M}
$$

where

$$
\beta_{M}=\mathcal{G}_{2}^{2} \mathcal{G}_{M} B_{22}+\mathcal{G}_{M}^{3} B_{11}+2 \mathcal{G}_{1}^{2} \mathcal{G}_{M} B_{11}+2 \mathcal{G}_{2} \mathcal{G}_{M}^{2} B_{12}+\mathcal{G}_{1}^{2} \mathcal{G}_{2} B_{12}
$$

and

$$
B_{i j}=\operatorname{Tr}\left(T^{i} T^{j}\right)_{3 \oplus 2 \oplus 1 \oplus 1}
$$

Assuming $\mathcal{G}_{M}=0$ at the initial scale, it can only "regrow" from from the last term. $\Rightarrow$ kinetic mixing will vanish at all scales iff

$$
\operatorname{Tr}\left(T^{1} T^{2}\right)_{3 \oplus 2 \oplus 1 \oplus 1}=0
$$

For generic $U(1)_{1} \times U(1)_{2}$ this is not the case.

## However, for the canonical basis

$$
\operatorname{Tr}\left(Y_{T_{3 R}} Y_{B-L}\right)_{16}=0
$$

Furthermore,

$$
\left[Y_{T_{3 A}}\right]_{H, \bar{H}}=(1) \mathbf{1}_{2} \oplus(-1) \mathbf{1}_{2} \quad, \quad\left[Y_{B-L}\right]_{H, \bar{H}}=(0) \mathbf{1}_{2} \oplus(0) \mathbf{1}_{2}
$$

$\Rightarrow$

$$
\operatorname{Tr}\left(Y_{Y_{3 R}} Y_{B-L}\right)_{H \bar{H}}=0
$$

Conclusion:

- The generators of the canonical basis are such that $\operatorname{Tr}\left(T^{1} T^{2}\right)=0$ when the trace is performed over the matter and Higgs spectrum of the MSSM. This guarantees that if the original kinetic mixing parameter vanishes, then $\alpha$ and, hence, $\mathcal{G}_{M}$ will remain zero under the $R G$ at any scale. This property of not having kinetic mixing greatly simplifies the renormalization group analysis of the $S U(3)_{C} \times S U(2)_{L} \times U(1)_{T_{3 R}} \times U(1)_{B-L}$ low energy theory.

What about non-canonical bases? We can prove a theorem that

- The only basis of $\mathfrak{h}_{3 \oplus 2} \subset \mathfrak{h}$ for which $U(1)_{Y_{1}} \times U(1)_{Y_{2}}$ kinetic mixing vanishes at all values of energy-momentum is the canonical basis $Y_{T_{3 R}}, Y_{B-L}$ and appropriate multiples of this basis.


## Sequential Wilson Line Breaking

$\pi_{1}\left(X /\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)\right)=\mathbb{Z}_{3} \times \mathbb{Z}_{3} \Rightarrow 2$ independent classes of non-contractible curves. $\Rightarrow$ each Wilson line has a mass scale $\propto r^{-1}$ of the curve it "wraps". Denote these by $M_{\chi_{T_{3 R}}}, M_{\chi_{B-L}}$. Three possibilities: $M_{\chi_{T_{3 R}}} \simeq M_{\chi_{B-L}}, M_{\chi_{B-L}}>M_{\chi_{T_{3 R}}}$ or $M_{\chi_{T_{3 R}}}>M_{\chi_{B-L}}$. First consider

$$
\underline{M_{\chi_{B-L}}>M_{\chi_{T_{3 R}}}}:
$$

Recall $\quad Y_{B-L}=2\left(H_{1}+H_{2}+H_{3}\right)=3(B-L)$. In addition to $\mathfrak{s u}(3)_{C} \oplus \mathfrak{s u}(2)_{L}$ this commutes with $\alpha_{5}$ and, hence, $\mathfrak{s u}(2)_{R}$.
$\Rightarrow$

$$
\operatorname{Spin}(10) \rightarrow S U(3)_{C} \times S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L}
$$

Gauge group of the "left-right" model. At $M_{I}=M_{\chi_{T_{3 R}}}$ $\chi_{T_{3 R}}$ turns on and breaks $S U(2)_{R} \rightarrow U(1)_{T_{3 R}}$.

Second, consider

$$
\underline{M_{\chi_{T_{3 R}}}>M_{\chi_{B-L}}}:
$$

Recall $Y_{T_{3 R}}=H_{4}+H_{5}=2\left(Y-\frac{1}{2}(B-L)\right)=2 T_{3 R}$. In addition to $\mathfrak{s u}(3)_{C} \oplus \mathfrak{s u}(2)_{L}$ this commutes with


$$
\operatorname{Spin}(10) \rightarrow S U(4)_{C} \times S U(2)_{L} \times U(1)_{T_{3 R}}
$$

Gauge group of the "Pati-Salam" model. At $M_{I}=M_{\chi_{B-L}}$ $\chi_{B-L}$ turns on and breaks $S U(4)_{C} \rightarrow S U(3)_{C} \times U(1)_{B-L}$.

In each case, can compute the exact zero-mode spectrum in the intermediate region.


- The two sequential Wilson line breaking patterns of $\operatorname{Spin}(10)$.


## The 3 3/B-L Breaking Scale

At a scale $M_{B-L}<M_{I}$ must spontaneously break

$$
U(1)_{T_{3 R}} \times U(1)_{B-L} \rightarrow U(1)_{Y}
$$

Since $\mathcal{G}_{M}=0$ in the canonical basis $\Rightarrow$ the $U(1)_{T_{3 R}} \times U(1)_{B-L}$ covariant derivative is

$$
D=\partial-i\left(Y-\frac{1}{2}(B-L), \sqrt{\frac{3}{8}}(B-L)\right)\left(\begin{array}{cc}
g_{3 R} & 0 \\
0 & g_{B L}
\end{array}\right)\binom{W_{R}^{0}}{B_{B-L}}
$$

The potential for a right-handed sneutrino $\tilde{\nu}$ is approximately

$$
V=m_{\tilde{\nu}}^{2}|\tilde{\nu}|^{2}+\frac{1}{8}\left(g_{B L}^{\prime 2}+g_{3 R}^{2}\right)|\tilde{\nu}|^{4}
$$

where $g_{B L}^{\prime}=\sqrt{\frac{3}{2}} g_{B L}$ and $m_{\tilde{\nu}}^{2}$ is the soft SUSYY parameter.
RG scaling $\Rightarrow$


In the canonical basis, no kinetic mixing implies we can solve the sneutrino soft breaking mass RGEs analytically. For example, in the "left-right" model

$$
\begin{gathered}
16 \pi^{2} \frac{d}{d t} m_{\nu}^{2}=-3 g_{B-L}^{2}\left|M_{B-L}\right|^{2}-2 g_{I_{2}^{R}}^{2}\left|M_{I_{3}^{R}}\right|^{2}+\frac{3}{4} g_{B-L}^{2} S_{B-L}-g_{I_{3}^{R}}^{2} S_{I_{3}^{R}} \\
16 \pi^{2} \frac{d}{d t} S_{B-L}=12 g_{B-L}^{2} S_{B-L} \\
16 \pi^{2} \frac{d}{d t} S_{I_{3}^{R}}=14 g_{I_{3}^{R}}^{2} S_{I_{3}^{R}}
\end{gathered}
$$

Taking $M_{1 / 2}=200 \mathrm{GeV}$ and all soft masses universal except the first and second family sneutrinos $\Rightarrow$


$$
\begin{aligned}
& M_{c} \simeq M_{\chi_{\text {heavy }}} \simeq M_{u} \alpha_{u} \\
& M_{\chi_{\text {light }}} \simeq M_{I}
\end{aligned}
$$

$$
B-L M S S M
$$

$$
M_{B-L} \longrightarrow \quad \alpha_{1}=\frac{5}{3 \alpha_{3 R}^{-1}+2 \alpha_{B L}^{-1}}
$$

$$
\begin{aligned}
\sqrt{\tilde{t}_{L} \tilde{t}_{R}} & \simeq M_{S U S Y} \frac{M S S M}{} \\
M_{Z} & \simeq M_{E W} \longrightarrow \quad \alpha_{1}=0.017, \quad \alpha_{2}=0.034, \quad \alpha_{3}=0.118
\end{aligned}
$$

## Example: Taking the "left-right" model, choosing

$$
M_{S U S Y}=1 \mathrm{TeV}, \quad M_{B-L}=1 \mathrm{TeV}
$$

and enforcing gauge unification, we find

$$
\begin{gathered}
M_{u}=3.0 \times 10^{16} \mathrm{GeV}, \quad M_{I}=3.7 \times 10^{15} \mathrm{GeV} \\
\alpha_{u}=0.046, \quad \alpha_{3 R}\left(M_{B-L}\right)=0.0171, \quad \alpha_{B L}\left(M_{B-L}\right)=0.0180
\end{gathered}
$$

## The running gauge parameters are




- One-loop RGE running of the inverse gauge couplings, $\alpha_{i}^{-1}$ in the case of the left-right model with $M_{B-L}=1 \mathrm{TeV}$ with an enlarged image of the intermediate region.


Figure 5: Plot (a) shows the $c_{\mu}(0)-\tan \beta$ plane corresponding to point (B) in Figure 2 with the phenomenologically allowed region indicated in dark brown. The mass spectrum at (Q) was presented in Table 3. A plot of the hierarchy $M_{B-L} / M_{Z}$ over the allowed region is given in (b). Graph (c) shows the hierarchy as a function of $c_{\mu}(0)$ along the $\tan \beta=12$ line passing through (Q).

| Particle | Symbol | Mass [GeV] | Particle | Symbol | Mass [GeV] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Squarks | $\tilde{Q}_{1,2}$ | 850 |  | $h^{0}$ | 127 |
|  | $\tilde{t}_{1,2}, \tilde{b}_{1,2}$ | 775,953 | Higgs | $H^{0}$ | 382 |
|  | $\tilde{b}_{3}^{(1)} \tilde{,}_{3}^{(2)}$ | 670,915 |  | $A^{0}$ | 381 |
|  | $\tilde{t}_{3}^{(1)}, \tilde{t}_{3}^{(2)}$ | 456,737 |  | $H^{ \pm}$ | 390 |
| Sleptons | $\tilde{L}_{1,2}$ | 1255 |  | $N_{1}^{0}$ | 97 |
|  | $\tilde{\tau}_{1,2}$ | 1237 | Neutralinos | $\tilde{N}_{2}^{0}$ | 189 |
|  | $\tilde{\tau}_{3}^{(1)}, \tilde{\tau}_{3}^{(2)}$ | 1217,1246 |  | $\tilde{N}_{3}^{0}$ | 499 |
| Charginos | $\tilde{\chi}^{ \pm}, \tilde{\chi}^{ \pm}$ | 190,510 |  | $\tilde{N}_{4}^{0}$ | 509 |
| Gluinos | $\tilde{g}$ | 712 |  | $Z^{\prime}$ | $A_{B-L}, \tilde{A}_{B-L}$ |

Table 3: The predicted spectrum at point (Q) in Figure 3. The tilde denotes the superpartner of the respective particle. The superpartners of left-handed fields are depicted by an upper case label whereas the lower case is used for right-handed fields. The mixing between the third family left- and right-handed scalar fields is incorporated.

