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● Discrete symmetries are a key ingredient in BSM model building

● For instance, in the MSSM dim 4 operators can induce fast proton 
decay:

- Matter-parity

- Baryon triality

Experimental signatures (at the LHC) depend on the symmetry!

Discrete gauge symmetries

• Non-Abelian discrete flavour symmetries might also explain 
textures of quark and lepton masses and mixings

● Discrete quantum symmetries of quiver theories, condensed 
matter, etc

  
Accidental or exact symmetries at the fundamental level?

[Ibáñez, Ross '92]



● Diverse arguments strongly suggest that global symmetries are 
violated by quantum gravitational effects: 

- Microscopic arguments in string theory

- General black hole arguments (charged black holes 
evaporate thermally into uncharged vacuum) 

Discrete gauge symmetries

• Hence, fundamental discrete symmetries should have a gauge nature
in quantum theories of gravity, and in particular in string theory

  

[Banks, Dixon '88]

[e.g. Banks, Seiberg '11 for 
a recent discussion]

• This has important implications: powerful selection rules, valid 
also in a complete non-perturbative formulation of the theory 

  



Previous works on discrete gauge symmetries in string theory:

Discrete gauge symmetries

Heterotic orbifolds:    Forste, Ko, Kobayashi, Nilles, Park, Ploger,
              Raby, Ramos-Sanchez, Ratz, Vaudrevange...  '04 - '12

Magnetized branes:    Abe, Choi, Kobayashi, Ohki, Sakai...  '09 - '10

Intersecting branes:    Berasaluce, Ibanez, Soler, Uranga...  '11

Gepner models:    Ibanez, Schellekens, Uranga   '12



- Review of Abelian discrete gauge symmetries in 4d QFT

- General formalism for non-Abelian 4d discrete gauge 

symmetries and axions

- Non-Abelian discrete symmetries from torsion 

homology

- Non-Abelian discrete flavour symmetries in magnetized / 

intersecting branes

- Conclusions

Outlook

[Banks, Seiberg '11]

[Gukov, Rangamani, Witten '98]



Discrete gauge symmetries
in 4d QFT



● The basic Lagrangian for a Z
k
 discrete gauge symmetry is: 

Abelian discrete gauge symmetries

● It represents the gauging of continuous shift symmetry by a U(1):

k acts as a winding number 
in the map between the two S1  

● The discrete scalar equivalence therefore corresponds to 
fractional 1/k U(1) gauge transformations

[Banks, Seiberg '11]



● This picture can be easily extended to the multiple Abelian case: 

Abelian discrete gauge symmetries

● Theories with discrete gauge symmetries have sets of charged 
Aharonov-Bohm particle and string states, with charge conserved 
modulo k: [Alford, Krauss, Preskill, Wilczek  '89]

Linking number   

k k

γ

Σ



● Take a set of axion-like scalars with non-commuting shift symmetries: 

Non-Abelian discrete gauge symmetries

● The effective action can be described in terms of a non-linear σ-model 

● For an axionic scalar manifold M the number of independent shift
symmetries equals the dim. of M            group manifold 

● The effective action is given in terms of the right-invariant 1-forms of M 

● In addition there is a set of discrete identifications, so that the actual
compact axionic moduli space is M/Γ, with Γ a lattice in M 

● Discrete non-Abelian gauge symmetries described by gauging
the above σ-model action  



● Same logic than in the Abelian case: the discrete gauge symmetry 
is the group of field identifications in the scalar manifold modulo those
already accounted by the gauging 

Non-Abelian discrete gauge symmetries

● Example: Heisenberg group 

Right-invariant 1-forms: 

Γ: 



● Same logic than in the Abelian case: the discrete gauge symmetry 
is the group of field identifications in the scalar manifold modulo those
already accounted by the gauging 

Non-Abelian discrete gauge symmetries

● Example: Heisenberg group 

Gauged right-invariant 1-forms: 



● Same logic than in the Abelian case: the discrete gauge symmetry 
is the group of field identifications in the scalar manifold modulo those
already accounted by the gauging 

Non-Abelian discrete gauge symmetries

● Example: Heisenberg group 

Gauged right-invariant 1-forms: 



● Same logic than in the Abelian case: the discrete gauge symmetry 
is the group of field identifications in the scalar manifold modulo those
already accounted by the gauging 

Non-Abelian discrete gauge symmetries

with generators 

E.g., for k = 2,  

                 k = 3,

                 k = ....

● Example: Heisenberg group 



● The effective Lagrangian for discrete gauge symmetries is given 
by gauged non-linear σ-models for a set of axion-like scalars

● The order of each gauge generator is determined by the gauging, 
whereas the non-Abelian structure is determined by the 
non-commutativity of the shift symmetries 

● States in 4d electrically (magnetically) charged under discrete gauge 
symmetries are Aharonov-Bohm particles (strings)

● Aharonov-Bohm strings and particles induce fractional holonomies on
each other

Recap



Discrete gauge symmetries 
from torsion homology 

in string theory



NADGS from torsion homology
● A simple way to obtain Aharonov-Bohm strings and particles in 

string theory is to consider D-branes and/or NS-branes wrapped on
torsion cycles of the compactification manifold 

p-brane on torsion p-cycle           4d Aharonov-Bohm particle
(D-p)-brane on torsion (D-p-1)-cycle     4d Aharonov-Bohm string  

UCT + Poincaré duality:  

● They satisfy Z
k
 holonomies: 



NADGS from torsion homology

● A-B strings and particles are the smoking gun of massive U(1)'s
Higgssed down to discrete Z

k
 gauge symmetries via the Stuckelberg

mechanism 

● We can see this more explicitly from dimensional reduction. For that
we introduce the set of eigenforms of the Laplacian that correspond
to the generators of                                          and
                                              

● Expanding in these forms,



NADGS from torsion homology
● Non-Abelianity arises in this context from non-trivial relations

between torsion homology classes 

● To be more specific, consider type IIB compactifications to 4d 

F1, D1 D3 D3 NS5, D5 

D5 NS5

T
1

T
2

D3

D5 NS5

T
1

T
2 T

3

Hanany-Witten 



NADGS from torsion homology
● Macroscopic counterpart in terms of torsion forms with relations 



NADGS from torsion homology
● Macroscopic counterpart in terms of torsion forms with relations 

● Dimensionally reducing 10d type IIB sugra action on these forms: 



NADGS from torsion homology
● Example:  N fractional D3-branes at a C3/Z

3
 singularity 

SU(N)

SU(N)SU(N)

ψ
1

ψ
2

ψ
3

AdS/CFT

AdS
5
 x S5/Z

3

[Gukov, Rangamani, Witten '98]

Non-Abelian discrete quantum symmetry: 

dim. reduction



Discrete flavour symmetries 
in magnetized/intersecting 

brane models



Discrete flavour symmetries

● Non-Abelian discrete flavour symmetries arise in systems of 
magnetized or intersecting branes due to the interplay between
discrete isometries and massive D-brane U(1)'s 

● Consider a T2 with a U(1) gauge field background 

● Magnetization breaks translational symmetries 

and need to be compensated with a U(1) gauge trasformation 



Discrete flavour symmetries

● Compatibility with the T2 identifications implies that only a discrete 
subgroup survives 

● Discrete isometries act as flavour symmetries on matter fields
(degenerate Landau levels) 

● Lead to selection rules e.g. in Yukawa couplings 

[Cremades et al. '03; Abe et al. '09]

● Underlaying continuous symmetry preserved perturbatively but violated 
by non-perturbative effects. Discrete subgroup exact in the full theory. 



Discrete flavour symmetries
● We can get further insight from dimensional reduction. Consider a 

stack of magnetized D9-branes on a T6 = (T2)
1 
x (T2)

2 
x (T2)

3
 

10d type I sugra action 

dim. reduction 

4d non-linear σ-model 

Kahler metrics agree with
CFT computation of 

[Lust, Mayr, Richter, Stieberger '09]



Discrete flavour symmetries

● Linear combinations of D-brane U(1) gauge symmetries

are spontaneously broken to (flavour universal) discrete gauge
symmetries by 'eating' RR scalars 

● Translational isometries of the torus are spontaneously broken to
a discrete flavour gauge symmetries by 'eating' some D-brane 
Wilson line scalars 

● These symmetries span a non-Abelian alegebra of the form

[Berasaluce, Ibanez, Soler, Uranga '11]



Discrete flavour symmetries

● Let us consider an example:

[Cremades et al. '03]
[Marchesano,Shiu '04]

baryon triality
(non-pert. exact!)

[Berasaluce, Ibanez, Soler, Uranga '11]



Discrete flavour symmetries
● Baryon triality in this model is the center of a                             discrete

flavour symmetry, generated by the four Z
3
 discrete isometries of the

2nd and 3rd tori

● The four flavour symmetry generators act on the MSSM fields as

and imply exact relations between Yukawa couplings

rank 1 Yukawa couplings
(non-pert. exact!)



From D-brane discrete symmetries
 back to torsion cycles



From D-branes back to torsion cycles
● D-brane discrete gauge symmetries can also be understood in

terms of torsion homology in M-theory.  

● Consider M-theory on a G
2
 manifold admitting at least one

perturbative type IIA CY
3
 orientifold limit  

b
2
 massless U(1)'s and b

3
 massless complex scalars  

● In the perturbative limit some of them become massless D6-brane 
U(1)'s and moduli  

● In addition massive U(1) gauge symmetries spontaneously broken to
discrete gauge symmetries arise from  



From D-branes back to torsion cycles
● In the perturbative limit some of these become D6-brane discrete

gauge symmetries arising from the D6-brane Stuckelberg couplings  

M2-brane on torsion 2-cycle           4d Aharonov-Bohm particle
M5-brane on torsion 4-cycle        4d Aharonov-Bohm string  

k

k

γ

Σ M5

M5

M5

M5

M2

M2

M2

M2



Conclusions



Conclusions

● They arise naturally in string theory compactifications from massive 
gauge symmetries (isometries, D-brane / RR gauge symmetries, etc).  

● Symmetries arising from torsion homology (e.g. branes at singularities) 
can be suitably accounted for in dimensional reduction by considering 
torsion forms. Non-Abelianity arises from intersection of torsion forms 
via the Hanany-Witten effect.  

● Discrete gauge symmetries are described in 4d dimensions in terms
of gauged non-linear σ-models for axion-like scalars.  

● Non-Abelian interplay between discrete isometries (flavour symmetries)
and discrete D-brane symmetries (matter parity, baryon triality, etc)   

● Discrete symmetries are non-perturbatively exact; underlying continous 
symmetry only perturbatively exact. Powerful selection rules: Yukawa
textures, proton decay, etc. Sometimes too restrictive.
   [Abel, Goodsell '06]
[Blumenhagen, Cvetic, Lust, Richter, Weigand '07]
[Marchesano, Martucci '09]



Future directions

● R-symmetries  

● Application to F-theory  

● Systematic classification of flavour symmetries  

● Models of lepton flavour mixing  

● Discrete symmetries in heterotic line bundle models  

● ...  
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