Fluxes and Chern-Simons Theories for F-theory

Thomas W. Grimm

Max Planck Institute for Physics, Munich (Werner-Heisenberg-Institut)

Chirality + Flux: 1111.1232 [hep-th] with H. Hayashi

6d + Chiral tensors: 1111.1232 [hep-th] with F. Bonetti 1206.1600 [hep-th] with F. Bonetti

with F. Bonetti with F. Bonetti, S. Hohenegger

Constraints: 1204.3092 [hep-th] with W. Taylor

CERN, July 2012

Introduction and Motivation

Systematics of compactifications

Fundamental theory (String/M-/F-theory)

low energies Wilsonian effective action: integrate out massive states which are heavier than a certain energy scale

Classifying the core data of the effective actions by discrete information:

$$ec{N} = egin{pmatrix} ec{N}_{ ext{geom}} \ ec{N}_{ ext{brane}} \ ec{N}_{ ext{flux}} \ ec{N}_{ ext{flux$$

topological data of the compactifications manifold (Hodge-numbers, intersection numbers, Chern classes)

topological data of the brane configuration (number of branes, wrapping numbers, intersections...)

flux data, bulk + brane

 field dynamics is encoded by effective action effective potential, vacua, ... phenomenology

Looking for the unifying setup...

- ideally: look for unifying fundamental setup where Type IIA/IIB and the various branes are just different aspects
- major drawback: $\mathbb{M}^p \times X_{11-p}$ effective theory in even dim.

 \Rightarrow internal manifold is odd dim.

F-theory provides an ideal setup for:

(1) unifying 7-brane and bulk physics $\vec{N}_{\text{brane}} \& \vec{N}_{\text{geom}}$ in complex geometries (2) promising phenomenological scenarios (GUTs, moduli stabilization)

Obstacles in the study of F-theory

- contrast to string/M-theory: no 12-dimensional F-theory effective action also: fundamental formulation is poorly understood
- F-theory physics is often studied using limits and dualities:
 - weak coupling limit with D7-branes and O7-planes
 - F-theory / heterotic duality
 - local geometries
- Only known way to extract generic features of F-theory effective actions is via its formulation as a limit of M-theory.
- <u>Remark</u>: if objects like G₄ flux and M5-branes are used in the context of F- theory this limit is always understood

Goals of this talk:

- Part I: Derive 4D chiral index for F-theory compactifications using M-theory G₄-flux in the F-theory limit
- Part II: Study corrections to the Chern-Simons terms due to Kaluza-Klein modes as predicted by M-theory
- Part III: Comment on constraints imposed by F-theory
- Message: F-theory effective action can be reliably studied:
 bulk + 7-brane physics in a unified N=1 framework
 M-theory origin of various F-theory effects can be unexpected

F-theory via M-theory

F-theory compactifications

- Type IIB has non-perturbative $Sl(2,\mathbb{Z})$ symmetry rotating $\tau = C_0 + ie^{-\phi}$ \Rightarrow interpret τ as complex structure of a two-torus (2 auxiliary dimensions)

[Vafa] [Morrison, Vafa]

- minimally supersymmetric F-theory compactifications:
 - F-theory on torus fibered Calabi-Yau 4-fold Y_4
 - \Rightarrow 4 dim, N=1 supergravity theory
 - \Rightarrow base B_3 is a Kähler manifold

- singularities of the fibration are crucial to encode 7-brane physics
 ⇒ pinching torus indicates presence of 7-branes magn. charged under *T*
- brane and bulk physics encoded by <u>complex</u> geometry

F-theory via M-theory

- F-theory viewed as auxiliary `12 dim.' theory (torus volume unphysical)
- F-theory effective actions has to be studied via M-theory Consider M-theory on space $T^2 \times M_9$

au is the complex structure modulus of the T^2 , $extsf{v}$ volume of T^2

F-theory limit:

- (1) A-cycle: if small than M-theory becomes Type IIA
- (2) **B-cycle**: T-duality \Rightarrow Type IIA becomes Type IIB, τ is indeed dilaton-axion
- (3) grow extra dimension: send $v \rightarrow 0$ than T-dual B-cycle becomes large
- can be generalized for singular T^2 fibrations: e.g. Taub-NUT \rightarrow D6 \rightarrow D7

F-theory / M-theory geometries

- F-theory geometries can be constructed and analyzed
 - singularities of elliptic fibration induce non-Abelian gauge symmetry
 - singularity resolution:(resolution at each codimension)

- <u>Examples</u>: compact, fully resolved Calabi-Yau three-/fourfolds
 ⇒ toric geometry: numerous examples + various types of gauge groups
- Unification of *N*_{geom} and *N*_{brane} on resolved Calabi-Yau manifolds
 ⇒ bulk and 7-brane geometries systematically classified by smooth higher-dimensional complex geometries!

M-theory on resolved CY manifolds

- physical interpretation of resolution only possible in M-theory
 - moving branes apart on the B-circle:
 - Coulomb branch of the lower-dimensional gauge theory: $G \rightarrow U(1)^{\text{rank}G}$

- Massive states from M2 branes on geometric 2-cycles:
 - M2-branes on resolution \mathbb{P}^1 's over generic points of *S*

 \Rightarrow massive `W-bosons' of G-breaking

M2-branes on resolution \mathbb{P}^1 's over intersection

 \Rightarrow massive matter multiplets

M2-branes on the elliptic fiber \Rightarrow massive Kaluza-Klein modes

All massive states have to be <u>integrated out</u> to determine Wilsonian effective action \Rightarrow in circle compactification also KK-modes are crucial!!

4D F-theory effective actions via M-theory

 effective actions can be computed via M-theory / 11-dimensional supergravity on the resolved Calabi-Yau fourfolds

F-theory on singular CY₄ 'Gauge bundle'

4d, N=1 effective theory with non-Abelian gauge symmetry *G*

circle compactification

3d, N=2 effective theory pushed to 3d Coulomb branch: $U(1)^{\text{rk}G}$

 explicit: N=1 characteristic data determining the action M-theory on resolved \tilde{CY}_4 G_4 - flux

3d, N=2 effective theory with only abelian gauge symmetries

compare

4d/3d [TG] [TG,Kerstan,Palti,Weigand] [TG, Savelli] [TG, Hayashi] [TG,Klevers,Poretschkin]

Part I: Chiral index from flux

Finally facing F-theory fluxes for fibered fourfolds

- specification of flux bundle in F-theory is hard spectral cover-type methods, link to weak coupling
- M-theory dual model on fully resolved CY₄: <u>non-Abelian groups:</u> new resolution two-forms (dual to resolution divisors)

 $\omega_i \quad i=1,\ldots,\operatorname{rank}(G)$

fully resolved geometry has new intersection numbers (compute explicitly): $\int \omega_i \wedge \omega_j \wedge \omega_k \wedge \omega_l$

extra U(1)'s: new resolution two-forms

$$\tilde{\omega}_m \quad m = 1, \dots, n_{\mathrm{U}(1)}$$

M-theory fluxes we consider:

$$G_4 = m^{\Sigma\Lambda}\omega_{\Sigma} \wedge \omega_{\Lambda}$$

- $m^{\Sigma\Lambda}$ subject to vanishing conditions to lift to F-theory
- $m^{\Sigma\Lambda}$ subject to quantization conditions (Freed-Witten) [Collinucci, Savelli]

F-theory chiral spectrum via M-theory

- determination of charged chiral spectrum is much harder:
 - chirality induced by fluxes on 7-branes, but in M-theory on resolved 4-fold there are <u>no</u> chiral fields
 - Chirality formulas for M/F-theory setups?

 $\chi(\mathbf{R}) = \int_{S_{\mathbf{R}}} G_4$

 $G_4 = \langle dC_3 \rangle$ flux on resolved fourfold

- [Braun,Collinucci,Valandro] [Marsano,Schäfer-Nameki] [Krause,Mayrhofer,Weigand] [TG,Hayashi] [Intriligator,Jockers,Mayr, Morrison,Plesser] [Küntzler,Schäfer-Nameki]
- 3D one-loop Chern-Simons terms linked to 4D chiral index $\chi(\mathbf{R})$
- 3D M-theory Chern-Simons terms computes anomaly free chiral spectrum

[TG,Hayashi] [TG,Klevers] in progress

3D Chern-Simons vs. 4D chiral matter

3d Chern-Simons terms:

$$S_{\rm CS}^{(3)} = \int \Theta_{ij} A^i \wedge F^j \qquad U(1)^{\rm rk}G$$

No such terms from classical circle reduction of 4d, N=1 theory \Rightarrow generated at <u>one loop</u> by massive fermions

$$\Theta_{ij}^{1-\text{loop}} = \frac{1}{2} \sum_{\text{rep}} n_{\text{rep}} \sum_{\lambda \in W(\text{rep})} \lambda_i \lambda_j \operatorname{sign}(w_k \xi^i)$$

[Aharony, Hanany, Intriligator Seiberg, Strassler]

[TG,Hayashi]

M-theory on resolved CY₄ has classical Chern-Simons term:

$$\Theta_{ij}^{\text{flux}} = \int_{\widetilde{\text{CY}}_4} G_4 \wedge \omega_i \wedge \omega_j$$

- G₄ fluxes on CY_4 count 4D chiral matter spectrum massive in the 3D Coulomb branch ⇒ determine <u>chiral index</u> $\Theta_{ii}^{1-\text{loop}} = \Theta_{ii}^{\text{flux}}$
- 4D anomaly induced by chiral matter is captured by 3D Chern-Simons term at one loop in the Coulomb branch (F-theory vs. M-theory)

Examples: with or without U(1)

[TG,Hayashi]

- M-theory fluxes which do not break SU(5) gauge group consider e.g. base P² × P¹
 - (1) toric construction of fully resolved CY_4
 - (2) computation of intersection numbers: fluxes of form $G_4 = m^{ij}\omega_i \wedge \omega_j$
 - (3) computation of Mori cone to evaluate: sign($\int J$)

[Marsano,Schäfer-Nameki]

 \Rightarrow compute chirality by using one-loop equation

- U(1) restricted Tate model: simple way to globally obtain geometrically massless U(1) for a fourfold [TG,Weigand]
 - \Rightarrow same program can be applied for fluxes of the form $G_4 = F_{U(1)} \wedge \omega_{U(1)}$
- Algorithmic implementation and model searches are possible!
 ⇒ scanning over Kreuzer-Skarke list for fourfolds....

Part II: Kaluza-Klein modes in M- to F-theory duality

Extending M-theory to F-theory limit

- Comparing geometrically large M-theory compactification with circle compactification requires to integrate out Kaluza-Klein modes
- one-loop corrections to Chern-Simons terms do not depend on mass of the modes in the loop:

<u>key example:</u> Kaluza-Klein theory of S^1 – compactification from D to D-1 dimensions (D even)

$$k_{\rm KK} \int_{M_{D-1}} A^0 \wedge F^0 \wedge \dots \wedge F^0$$

KK-vector

$$ds_D^2 = r^2 (dy + A^0)^2 + ds_{D-1}^2$$

 $k_{\rm KK}$ only arise at one loop due to integrated out KK-modes

 match of 5D M-theory compactifications and 6D F-theory reveals physics of self-dual tensors in 6D [Bonetti,TG]

[Bonetti,TG,Hohenegger]

Tool: anomaly cancellation in 6D, N=1 Sugra

- anomalies cancel among the fields: e.g. $tr(R^4)$ - gravitational anomaly

Green-Schwarz mechanism to cancel residual anomaly [Sagnotti]

$$S_{\rm GS} = \int B_2^\beta \,\Omega_{\alpha\beta} \wedge \left[a^\alpha \operatorname{tr}(R \wedge R) + b^\alpha \operatorname{Tr}(F \wedge F) \right]$$

constant anomaly vectors for T+1 tensors B_2^{β}

e.g. $tr(R^2)^2$ - gravitational anomaly

$$a^{\alpha}\Omega_{\alpha\beta}a^{\beta} = 9 - T$$

Derivation for F-theory via M-theory

[Bonetti,TG]

start with topological terms of 11D sugra:

$$S_{\rm CS}^{(11)} = \int C_3 \wedge G_4 \wedge G_4 + \int C_3 \wedge I_8(R) \checkmark$$

fourth order polynomial in - the 11d Riemann tensor

• expand M-theory three-form along $H^2(\tilde{CY}_3)$

$$C_3 = A^0 \wedge \omega_{B_2} + A^\alpha \wedge \omega_\alpha + A^i \wedge \mathbf{w}_i$$

 ω_{B_2} base $\rightarrow A^0$ is KK vector

in going from 6D to 5D

 ω_{α} pulled back from the base $\rightarrow A^{\alpha}$ 6D tensors

w_i resolution of gauge sing. → A^i 6D vectors (Cartans)

insert KK-ansatz into 11D topological terms
 → read off: e.g. $a^{\alpha} = K^{\alpha}$ $[K] = K^{\alpha} \omega_{\alpha}$ canonical class of base B₂

New Chern-Simons terms at one loop

- M-theory on CY₃ : extra Chern-Simons terms with <u>no classical</u> KK analog, e.g.

 $① \int \mathcal{K}_{ijk} A^{i} \wedge F^{j} \wedge F^{k}$ three exceptional indices: singularity structure → one loop: massive W-bosons + charged matter gauge theory comp: [Witten],[Intriligator,Morrison,Seiberg]

$$2 \int \Omega_{\alpha\beta} K^{\alpha} K^{\beta} A^{0} \wedge F^{0} \wedge F^{0}$$

three times base: use for ell. fibrations $\omega_0^2 = [K] \land \omega_0$ → one loop: massive KK modes for all 6D fermions and 6D tensors → eff. theory: $\Omega_{\alpha\beta}K^{\alpha}K^{\beta} = 9 - T$

[Bonetti,TG,Hohenegger]

 $(3) \int (c_2)_0 A^0 \wedge \operatorname{tr}(R \wedge R)$

<u>M-theory prediction:</u> $(c_2)_0 = 48 - 4T$ eff. theory derivation is not known

→ 6D anomaly cancellation → relations among 5D CS-coefficients & spectrum

6D Self-dual tensors and their KK-action

- A⁰ ∧ F⁰ ∧ F⁰ coupling <u>cannot</u> only be generated by KK-fermions: also KK-modes of self-dual tensors need to run in loop
- <u>Kaluza-Klein inspired action</u>: KK-ansatz $\hat{B} = \sum_{n \in \mathbb{Z}} e^{iny} [B_n + A_n \wedge (dy + A^0)]$ $S = \int -\frac{1}{2}r^{-1}\mathcal{F} \wedge *\mathcal{F} + \frac{1}{2}c A^0 \wedge \mathcal{F} \wedge \mathcal{F}$ $+ \sum_{n=1}^{\infty} \int -r^{-1}\bar{\mathcal{F}}_n \wedge *\mathcal{F}_n + \frac{i}{n}c \bar{\mathcal{F}}_n \wedge \mathcal{DF}_n$ $\mathcal{D} = d - inA^0$ [Bonetti,TG,Hohenegger]

self-dual tensors have in 5D KK-tensor modes with Chern-Simons kinetic terms [Townsend etal.]

Computed contribution of all KK-modes of N=1, 6D sugra:

Part III: Topological terms and constraints

Basic idea:

[TG,Taylor]

- in 6D F-theory compactifications on CY₃:
 - effective theory: strong constraints from anomalies (gauge+gravitational...)
 - F-theory geometry: topological properties of resolved elliptic fibrations can be matched with the anomaly constraints
 - ⇒ relating terms in the effective action and spectrum (Green-Schwarz)
- in 4D F-theory compactifications on CY₄:
 - F-theory geometry: various topological properties genuine to consistent compactification
 - ⇒ Can one relate terms in the effective action and spectrum despite the absence of certain anomalies? Are there universal constraints?

4D topological terms

[TG,Taylor]

- to formulate constraints we also need topological terms axion couplings
 - topological terms with 7-brane gauge field

$$b^{\alpha}\chi_{\alpha}\operatorname{Tr}(F \wedge F) \longrightarrow [S] = b^{\alpha}\omega_{\alpha}$$
 location of 7-branes in B_3

topological terms involving curvature

$$\int a^{\alpha} \chi_{\alpha} \operatorname{tr}(R \wedge R) \longrightarrow [K] = a^{\alpha} \omega_{\alpha} \quad \text{canonical class of } B_{3}$$

 \rightarrow our derivation using orientifold limit (likely also via M-theory as in 6D/5D)

higher curvature terms are crucial to determine 7-brane configuration: discriminant:

 $[\Delta] = \operatorname{rank}(G)[S] + [\Delta'] \longleftarrow$

 I_1 locus only visible via higher curvature terms in effective action

Constraints

- Relating the moduli spectrum to couplings: (no anomaly interpretation)
 - define $\langle \langle x, y, z \rangle \rangle := \mathcal{K}_{\alpha\beta\gamma} x^{\alpha} y^{\beta} z^{\gamma}$ \cdot no gauge group $\overset{\text{complex str.}}{\cdot} \overset{\text{Kähler +}}{\cdot} axion$ $39 - 60 \langle \langle a, a, a \rangle \rangle = C_{cs} + C_{sa} - C_{21} \leftarrow axion+axion$
 - including gauge group, but no charged matter [Andreas, Curio] $39 - 60\langle\langle a, a, a \rangle\rangle = C_{cs} + C_{sa} - C_{21} + r_G + \frac{1}{6}r_G(c_G + 1)\langle\langle a + b, a + b, b \rangle\rangle$
- complications from a general 4D theory:
 - distinguish the moduli fields (all chiral multiplets in 4D), as in 5D
 - scalar potential e.g. due to fluxes \rightarrow focus on light fields
 - corrections and additional axion-(curvature)²,
 e.g. dilaton-axion at weak string coupling, additional het. axion

[TG,Taylor]

derivation of Euler

number of fourfold

[Sethi, Vafa, Witten]

Conclusions

- M-theory to F-theory limit is powerful (double-dimensional reduction)
 - importance of Chern-Simons terms: study theory and formulate constraints loop corrections

 classical M-theory results
 - importance of Kaluza-Klein modes in circle reduction:
 6D self-dual tensors → Kaluza-Klein modes: interesting action, induce new couplings
 - key properties of F-theory compactifications encoded by topological terms
 → might lead to interesting constraints beyond anomaly conditions

• Many open questions:

M5-branes instantons behave non-trivially in the M-theory to F-theory limit

[Cvetič,TG,Halverson,Klevers] in progress

- extend constraint analysis in 4D, including fluxes and potentials
- constraining continuos parameters

The End. Thank you!

Gauge theory and singularities

- a closer look at the resolution space: e.g. single stack of branes
 - **4D:** gauge theory on surface 4-cycle $S \subset B_3$
 - further enhancement along intersection curve \sum (2-cycle) of two 7-branes \Rightarrow matter representations *R*

Classical 5D Chern-Simons terms

<u>5D Chern-Simons actions:</u>

$$\int b^{\alpha} \Omega_{\alpha\beta} A^{\beta} \wedge (C_{ij} F^{i} \wedge F^{j}) \longrightarrow [S] = b^{\alpha} \omega_{\alpha} \quad \text{location of 7-branes in } B_{2}$$
$$\int a^{\alpha} \Omega_{\alpha\beta} A^{\beta} \wedge \operatorname{tr}(R \wedge R) \longrightarrow [K] = a^{\alpha} \omega_{\alpha} \quad \text{canonical class of } B_{2}$$

topological $tr(R^2)$ - terms are given by second Chern class of CY_3 [Antoniadis,Ferrara,Minasian,Narain]

 have to use non-trivial geometric facts for Chern-classes of elliptic fibrations: (e.g. for smooth elliptic fibrations)

 $c_2(\tilde{CY}_3) = c_2(B_2) + 11c_1^2(B_2) + 12c_1(B_2) \wedge \omega_{B_2}$

- 5D terms lift to be part of 6D Green-Schwarz term → M-theory deriv. of (b^{α}, a^{α}) compare with [Kumar,Morrison,Taylor] [Park,Taylor]