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  Systematics of compactifications

➡ Fundamental theory (String/M-/F-theory)    
                     Wilsonian effective action:  integrate out massive states 
                       which are heavier than a certain energy scale

➡ Classifying the core data of the effective actions by discrete information:

                                     topological data of the compactifications manifold 
                                        (Hodge-numbers, intersection numbers, Chern classes)

                                     topological data of the brane configuration
                                        (number of branes, wrapping numbers, intersections...)  
  
                                     flux data, bulk + brane 

➡ field dynamics is encoded by effective action  
effective potential, vacua, ... phenomenology  
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  Looking for the unifying setup...

➡ ideally: look for unifying fundamental setup where Type IIA/IIB and the various 
branes are just different aspects

➡ major drawback:                                       effective theory in even dim. 
                                                                        ⇒ internal manifold is odd dim. 

F-theory provides an ideal setup for:
 

(1)  unifying 7-brane and bulk physics                                in complex geometries

(2)  promising phenomenological scenarios (GUTs, moduli stabilization)
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⇒  M-theory 
      in 11d

key example:  D6-branes admit geom. interpretation 
                         in M-theory ⇒  unify              and 
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  Obstacles in the study of F-theory 

➡ contrast to string/M-theory: no 12-dimensional F-theory effective action 
also: fundamental formulation is poorly understood

➡ F-theory physics is often studied using limits and dualities:
‣ weak coupling limit with D7-branes and O7-planes
‣ F-theory / heterotic duality
‣ local geometries

➡ Only known way to extract generic features of F-theory effective actions is 
via its formulation as a limit of M-theory.

➡ Remark:  if objects like G   - flux and M5-branes are used in the context of  
                 F- theory this limit is always understood
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  Goals of this talk:

➡ Part I:        Derive 4D chiral index for F-theory compactifications 
                   using M-theory G   -flux in the F-theory limit   

➡ Part II:      Study corrections to the Chern-Simons terms due to Kaluza- 
                  Klein modes as predicted by M-theory

➡ Part III:    Comment on constraints imposed by F-theory

➡ Message:   - F-theory effective action can be reliably studied:
                      bulk + 7-brane physics in a unified N=1 framework
                   - M-theory origin of various F-theory effects can be unexpected 
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 F-theory via M-theory
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  F-theory compactifications 

➡ Type IIB has non-perturbative                  symmetry rotating 
⇒ interpret       as complex structure of a two-torus (2 auxiliary dimensions)

➡ minimally supersymmetric F-theory compactifications:

‣ F-theory on torus fibered Calabi-Yau 4-fold   
⇒     4 dim, N=1 supergravity theory 
⇒     base        is a Kähler manifold

➡ singularities of the fibration are crucial to encode 7-brane physics
 ⇒  pinching torus indicates presence of 7-branes magn. charged under 

➡ brane and bulk physics encoded by complex geometry
8
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  F-theory via M-theory

➡ F-theory viewed as auxiliary `12 dim.’ theory  (torus volume unphysical)  

➡ F-theory effective actions has to be studied via M-theory 
Consider M-theory on space      

(1) A-cycle:   if small than M-theory becomes Type IIA
(2) B-cycle:  T-duality  ⇒  Type IIA becomes Type IIB,     is indeed dilaton-axion
(3) grow extra dimension:   send                  than T-dual  B-cycle becomes large 

➡ can be generalized for singular       fibrations:  e.g.  Taub-NUT ➝ D6 ➝ D7 
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Computing the 4d N = 1 effective action I

• need a framework to work with varying τ : from M-theory to F-theory (on one slide)

• Basic idea: consider M-theory one T 2 with metric

ds2
11 =

v

Imτ

�
(dx + Re τdy)2 + (Imτ)2dy2

�
+ ds2
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τ is the complex structure modulus of the T 2, v volume of T 2

!!"#"$%

"!"#"$%

a) consider A cycle: if small → M-theory becomes Type IIA strings

b) consider B cycle: T-duality → Type IIA becomes Type IIB strings

c) grow an extra dimension: send v → 0 since then T-dual B cycle becomes large

• Claim: the F-theory lift perform steps fiberwise for Y4 is T 2 fibration over B3

M-theory on Y4 (three-dim.) with v → 0 → F-theory on Y4 (four-dim.)

v → 0

F-theory limit:

τ

T 2
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  F-theory / M-theory geometries

➡ F-theory geometries can be constructed and analyzed 
‣ singularities of elliptic fibration induce non-Abelian gauge symmetry
‣ singularity resolution:

(resolution at each codimension)

➡ Examples:  compact, fully resolved Calabi-Yau three-/fourfolds
⇒ toric geometry:  numerous examples + various types of gauge groups

➡ Unification of               and               on resolved Calabi-Yau manifolds
⇒   bulk and 7-brane geometries systematically classified by 
       smooth higher-dimensional complex geometries!
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  M-theory on resolved CY manifolds

➡ physical interpretation of resolution only possible in M-theory
‣ moving branes apart on the B-circle:  

Coulomb branch of the lower-dimensional 
gauge theory:

➡ Massive states from M2 branes on geometric 2-cycles:
‣ M2-branes on resolution          over generic points of  S

                                                       ⇒  massive `W-bosons’ of G-breaking 
‣ M2-branes on resolution          over intersection        

                                                       ⇒  massive matter multiplets 
‣ M2-branes on the elliptic fiber  ⇒  massive Kaluza-Klein modes

➡ All massive states have to be integrated out to determine Wilsonian
effective action  ⇒  in circle compactification also KK-modes are crucial!!
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  4D F-theory effective actions via M-theory

➡ effective actions can be computed via M-theory / 11-dimensional 
supergravity on the resolved Calabi-Yau fourfolds 

➡ explicit: N=1 characteristic data           
determining the action                          
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F-theory on singular  CY4 M-theory on resolved  CY4
∼

3d, N=2 effective theory with
only abelian gauge symmetries

4d, N=1 effective theory with
non-Abelian gauge symmetry G

circle compactification

3d, N=2 effective theory pushed
to 3d Coulomb branch:

4d/3d   [TG] [TG,Kerstan,Palti,Weigand] 
                [TG, Savelli] [TG, Hayashi]
                [TG,Klevers,Poretschkin]

U(1)rkG
compare

‘Gauge bundle’ G   - flux 4
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Part I:  Chiral index from flux
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  Finally facing F-theory fluxes for fibered fourfolds

➡ specification of flux bundle in F-theory is hard
spectral cover-type methods,  link to weak coupling

➡ M-theory dual model on                                        :
non-Abelian groups: new resolution two-forms (dual to resolution divisors)      
       
                                                   fully resolved geometry has new intersection 
                                                   numbers (compute explicitly):

extra U(1)’s:   new resolution two-forms 

➡ M-theory fluxes we consider:

‣           subject to vanishing conditions to lift to F-theory
‣           subject to quantization conditions (Freed-Witten) 
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  F-theory chiral spectrum via M-theory

➡ determination of charged chiral spectrum is much harder: 
‣ chirality induced by fluxes on 7-branes, but in M-theory on  

resolved 4-fold there are no chiral fields 

‣ Chirality formulas for M/F-theory setups?

‣ 3D one-loop Chern-Simons terms linked to 4D chiral index         
‣ 3D M-theory Chern-Simons terms computes anomaly free chiral spectrum
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  3D Chern-Simons vs. 4D chiral matter

➡ 3d Chern-Simons terms:         
               

‣ No such terms from classical circle reduction of 4d, N=1 theory
⇒  generated at one loop by massive fermions

‣ M-theory on resolved           has 
classical Chern-Simons term: 

‣        fluxes on           count 4D chiral matter spectrum massive in the 3D 
Coulomb branch ⇒  determine chiral index

‣ 4D anomaly induced by chiral matter is captured by 3D Chern-Simons term 
at one loop in the Coulomb branch  (F-theory vs. M-theory)
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  Examples:  with or without U(1)

➡ M-theory fluxes which do not break SU(5) gauge group 
consider e.g. base                  
(1)  toric construction of fully resolved CY
(2)  computation of intersection numbers:   fluxes of form   
(3)  computation of Mori cone to evaluate:             

       ⇒  compute chirality by using one-loop equation

➡ U(1) restricted Tate model:   simple way to globally obtain geometrically 
massless U(1) for a fourfold
⇒  same program can be applied for fluxes of the form 

➡ Algorithmic implementation and model searches are possible!
⇒  scanning over Kreuzer-Skarke list for fourfolds....
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Part II:  Kaluza-Klein modes in 
M- to F-theory duality
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  Extending M-theory to F-theory limit

➡ Comparing geometrically large M-theory compactification with circle 
compactification requires to integrate out Kaluza-Klein modes

➡ one-loop corrections to Chern-Simons terms do not depend on mass of the 
modes in the loop:

key example:    Kaluza-Klein theory of           compactification from D to D-1 
                             dimensions (D even)

➡ match of 5D M-theory compactifications and 6D F-theory reveals physics 
of self-dual tensors in 6D 
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kKK

�

MD−1

A0 ∧ F 0 ∧ ... ∧ F 0

kKK

ds2D = r2(dy +A0)2 + ds2D−1

KK-vector

Monday, July 9, 2012



   Tool:  anomaly cancellation in 6D, N=1 Sugra

➡ anomalies cancel among the fields:  e.g.              - gravitational anomaly  

➡ Green-Schwarz mechanism to cancel residual anomaly                      

e.g.                - gravitational anomaly
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H − V = 273− 29T
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  Derivation for F-theory via M-theory 

➡ start with topological terms of 11D sugra:

➡ expand M-theory three-form along 

➡ insert KK-ansatz into 11D topological terms 
→ read off:   e.g.

21
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→         6D tensorsAα

[Bonetti,TG]

wi resolution of gauge sing.
→         6D vectors (Cartans) Ai

S(11)
CS =

canonical class of base B2aα = Kα [K] = Kαωα
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  New Chern-Simons terms at one loop

➡ M-theory on CY   :  extra Chern-Simons terms with no classical KK analog, e.g.

➡ 6D anomaly cancellation → relations among 5D CS-coefficients & spectrum
22

3
∼

�
KijkA

i ∧ F j ∧ F k three exceptional indices:  singularity structure
→ one loop: massive W-bosons + charged matter 

①

gauge theory comp:  [Witten],[Intriligator,Morrison,Seiberg]

②

③

three times base: use for ell. fibrations 
→ one loop: massive KK modes for all 6D fermions
     and 6D tensors
→ eff. theory:    
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  6D Self-dual tensors and their KK-action

➡                              coupling cannot only be generated by KK-fermions:  
also KK-modes of self-dual tensors need to run in loop

➡ Kaluza-Klein inspired action:       KK-ansatz 

self-dual tensors have in 5D KK-tensor modes with Chern-Simons kinetic terms

➡ Computed contribution of all KK-modes of N=1, 6D sugra:

e.g. tensors                                                        Proof:

23

A0 ∧ F 0 ∧ F 0

4

(a) (b)

FIG. 1: Diagrams contributing to 〈A0A0A0〉.

the propagator (19) and the electric vertex, naive power
counting yields a cubic UV divergence in the momentum
cutoff. Explicit computation of the parity violating term,
however, shows that this term only diverges linearly [12].
This linear divergence can be cancelled by adding the two
counter-terms

B̄µ
νB

νρF 0
ρµ , B̄µνF 0

νρB
ρλF 0

λµ , (20)

where the Kaluza-Klein level n has been suppressed on
all Bµν . These couplings introduce new vertices which
modify the contribution from diagrams of type (a) and
introduce new diagrams of type (b) depicted in figure
1. Note that one counterterm is not sufficient since each
of them introduces a cubic divergence into the parity-
violating part of the amplitude. Thus, two parameters
are needed to cancel all divergences.
In order to present the full result of the computation

of the parity-violating part of 〈A0A0A0〉, we introduce
the notation AX

n , where X indicates the type of field run-
ning in the five-dimensional loop at the nth Kaluza-Klein
level. The values of AX

n for tensors, spin-1/2 fermions,
and spin-3/2 fermions are respectively [12]

AB
n = −4cn3 , A1/2

n = c1/2n
3 , A3/2

n = 5c3/2n
3 , (21)

where a common normalization has been fixed and the
coefficients cX = ±1 indicate the chirality. Note that the

mass scale r−1 drops from the computation, so that the
only dependence on the Kaluza-Klein level is contained
in the common dimensionless factor n3.

Summing all contributions (21) from chiral fields in the
spectrum of (1,0) supergravity we get

A(1,0)
n = n3 [−4(1− T ) + 2(V −H − T ) + 10] , (22)

where fermionic contributions receive an extra factor of
2 since they carry an USp(2) index. Precise matching

between
∑

n A
(1,0)
n and kcs requires a suitable regular-

ization of the divergent sum
∑

n3. Independent of this
normalization issue, if the first relation in (17) is imposed

in (22), A(1,0)
n is proportional to 9− T .

Note that the counterterms (20) have mass dimension
greater than five and are suppressed by the compact-
ification mass scale r−1. Similarly to get (22), diver-
gences of the fermionic diagrams have been cancelled us-
ing r−1-suppressed counterterms. Thus this renormaliza-
tion scheme is suitable for Kaluza-Klein reductions.
Finally, let us also briefly discuss the analog situation

in a (2, 0) theory. In this case, the gravity multiplet com-
prises two gravitinos and five self-dual tensors, and each
of the T tensor multiplets includes one anti-self-dual ten-
sor and one USp(4) right-handed spin-1/2 fermion. If
(21) are summed over this spectrum, one has

A(2,0)
n = n3 [−4(5− T )− 4T + 20] ≡ 0 , (23)

which is consistent with the fact that the Chern-Simons
coupling A0F 0F 0 is forbidden in any five-dimensional
theory with 16 supercharges [10].
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Let us now put the pseudoaction (2) on a circle, by
means of the Kaluza-Klein ansatz for the metric,

dŝ2(x, y) = ds2(x) + r2(x)[dy +A0(x)]2 . (3)

In this relation, x are the non-compact D − 1 coordi-
nates, y ∼ y + 2π is the coordinate along the circle, r is
the compactification radius, and A0 is the Kaluza-Klein
vector, with field strength F 0 = dA0.
We expand the D-dimensional p-form B̂ in Kaluza-

Klein modes according to

B̂ =
∑

n∈Z

einy
[

Bn +An ∧ (dy +A0)
]

, (4)

where Bn, An are (D−1)-dimensional p-forms and (p−1)-
forms, respectively, and only depend on the non-compact
coordinates x. Our formalism requires p > 0, and hence
is not applicable to chiral scalars in two dimensions. Note
that Kaluza-Klein modes are subject to a reality condi-
tion, e.g. B̄n ≡ (Bn)∗ = B−n.
Dimensional reduction of the higher-dimensional field

strength Ĥ is conveniently described in terms of the
lower-dimensional field strengths

Hn = DBn −An ∧ F 0 , Fn = DAn + inBn , (5)

where we have introduced the covariant exterior deriva-
tiveD = d−inA0 acting on the nth mode. Note in partic-
ular the Stückelberg-like coupling in the second equation,
which ensures invariance under

δBn = DΛn , δAn = −inΛn . (6)

A straightforward computation shows that the pseu-
doaction (2) is reduced to the sum

∑

n S̃n, where

S̃n =

∫

− 1
4r H̄n ∧ ∗Hn − 1

4r
−1F̄n ∧ ∗Fn . (7)

Finally, the self-duality constraint (1) yields a constraint
for each Kaluza-Klein level, r ∗Hn = cFn. In the follow-
ing, we implement these constraints at the level of the
lower-dimensional action. To this end, zero-modes and
excited modes are treated differently.
For the sake of simplicity, we will henceforth drop the

Kaluza-Klein subscript on zero-modes, B ≡ B0, A ≡ A0.
As we can see from (6), the shift symmetry of the the-
ory acts trivially on the zero-mode A. Because of the
self-duality constraint, B and A thus furnish a redun-
dant description of the same degrees of freedom, and
no gauge-fixing condition can eliminate this redundancy.
Therefore, either A or B has to be eliminated by hand
from the action. In the following, we choose to remove
B and construct an action in terms of A only.
To achieve this goal, we modify S̃0 given in (7) adding

∆S̃0 =

∫

1
2cH ∧ F + 1

2c A
0 ∧ F ∧ F . (8)

This term is a total derivative as a functional of A,B,A0,
and is such that the sum S̃0 +∆S̃0 can be written as a

functional of A,H, A0. Moreover, (8) is engineered to get
the duality constraint r ∗ H = cF upon variation with
respect to H, which appears only algebraically. We are
thus able to integrate out H to get a proper (D − 1)-
dimensional action depending on A,A0 only. It reads

S0 =

∫

− 1
2r

−1F ∧ ∗F + 1
2c A

0 ∧ F ∧ F . (9)

Note that (5) implies F = dA for n = 0.
Let us now turn to the discussion of the self-duality

condition for the nth excited modes Bn, An. For n &=
0, the shift symmetry (6) acts non-trivially on An. As
a result, the redundancy of the formalism is simply a
manifestation of gauge invariance. Both Bn and An are
thus allowed to enter the action in the gauge-invariant
combination Fn given in (5).
The distinctive feature of the n &= 0 case is the identity

DFn = inHn, which is immediately derived from (5). It
allows us to modify S̃n in (7) by adding

∆S̃n =

∫

1
4c H̄n ∧ Fn + i

4nc F̄n ∧DFn + c.c. (10)

Indeed, this quantity is a total derivative as a functional
of An, Bn, A0. However, the total action S̃n +∆S̃n can
be seen as a functional of Fn,Hn, A0, in which Hn en-
ters only algebraically. As in the discussion of the zero-
modes, the duality constraint r ∗ Hn = cFn is imple-
mented through integrating out Hn. We are thus left
with the proper action

Sn =

∫

− 1
2r

−1F̄n ∧ ∗Fn + i
2nc F̄n ∧DFn , (11)

where An, Bn only appear through Fn.
We are now in a position to write down the total action

in D − 1 dimensions. It reads

S =

∫

− 1
2r

−1F ∧ ∗F + 1
2c A

0 ∧F ∧ F

+
∞
∑

n=1

∫

−r−1F̄n ∧ ∗Fn + i
nc F̄n ∧DFn . (12)

Note that we sum (11) over positive n only, thanks to
the reality conditions on An, Bn.
It is worth pointing out that the physical degrees of

freedom of excited modes can be described in terms of a
massive p-form Bn only. In fact, the gauge symmetry (6)
can be fixed imposing the condition An = 0, thus setting
Fn = inBn. As a result, the second line of (12) becomes

∞
∑

n=1

∫

−n2r−1B̄n ∧ ∗Bn + icn B̄n ∧DBn . (13)

The classical mass is mn = (n2r−1)(cn)−1 = cnr−1.
Note that (13) is invariant under local U(1) transfor-

mations of the complex p-form Bn gauged by A0. In [6]
this gauging is absent, and therefore it is possible to in-
tegrate out the real or imaginary part of Bn consistently.
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the compactification radius, and A0 is the Kaluza-Klein
vector, with field strength F 0 = dA0.
We expand the D-dimensional p-form B̂ in Kaluza-

Klein modes according to

B̂ =
∑

n∈Z

einy
[

Bn +An ∧ (dy +A0)
]

, (4)

where Bn, An are (D−1)-dimensional p-forms and (p−1)-
forms, respectively, and only depend on the non-compact
coordinates x. Our formalism requires p > 0, and hence
is not applicable to chiral scalars in two dimensions. Note
that Kaluza-Klein modes are subject to a reality condi-
tion, e.g. B̄n ≡ (Bn)∗ = B−n.
Dimensional reduction of the higher-dimensional field

strength Ĥ is conveniently described in terms of the
lower-dimensional field strengths

Hn = DBn −An ∧ F 0 , Fn = DAn + inBn , (5)

where we have introduced the covariant exterior deriva-
tiveD = d−inA0 acting on the nth mode. Note in partic-
ular the Stückelberg-like coupling in the second equation,
which ensures invariance under

δBn = DΛn , δAn = −inΛn . (6)

A straightforward computation shows that the pseu-
doaction (2) is reduced to the sum

∑

n S̃n, where

S̃n =

∫

− 1
4r H̄n ∧ ∗Hn − 1

4r
−1F̄n ∧ ∗Fn . (7)

Finally, the self-duality constraint (1) yields a constraint
for each Kaluza-Klein level, r ∗Hn = cFn. In the follow-
ing, we implement these constraints at the level of the
lower-dimensional action. To this end, zero-modes and
excited modes are treated differently.
For the sake of simplicity, we will henceforth drop the

Kaluza-Klein subscript on zero-modes, B ≡ B0, A ≡ A0.
As we can see from (6), the shift symmetry of the the-
ory acts trivially on the zero-mode A. Because of the
self-duality constraint, B and A thus furnish a redun-
dant description of the same degrees of freedom, and
no gauge-fixing condition can eliminate this redundancy.
Therefore, either A or B has to be eliminated by hand
from the action. In the following, we choose to remove
B and construct an action in terms of A only.
To achieve this goal, we modify S̃0 given in (7) adding

∆S̃0 =

∫

1
2cH ∧ F + 1

2c A
0 ∧ F ∧ F . (8)

This term is a total derivative as a functional of A,B,A0,
and is such that the sum S̃0 +∆S̃0 can be written as a

functional of A,H, A0. Moreover, (8) is engineered to get
the duality constraint r ∗ H = cF upon variation with
respect to H, which appears only algebraically. We are
thus able to integrate out H to get a proper (D − 1)-
dimensional action depending on A,A0 only. It reads

S0 =

∫

− 1
2r

−1F ∧ ∗F + 1
2c A

0 ∧ F ∧ F . (9)

Note that (5) implies F = dA for n = 0.
Let us now turn to the discussion of the self-duality

condition for the nth excited modes Bn, An. For n &=
0, the shift symmetry (6) acts non-trivially on An. As
a result, the redundancy of the formalism is simply a
manifestation of gauge invariance. Both Bn and An are
thus allowed to enter the action in the gauge-invariant
combination Fn given in (5).
The distinctive feature of the n &= 0 case is the identity

DFn = inHn, which is immediately derived from (5). It
allows us to modify S̃n in (7) by adding

∆S̃n =

∫

1
4c H̄n ∧ Fn + i

4nc F̄n ∧DFn + c.c. (10)

Indeed, this quantity is a total derivative as a functional
of An, Bn, A0. However, the total action S̃n +∆S̃n can
be seen as a functional of Fn,Hn, A0, in which Hn en-
ters only algebraically. As in the discussion of the zero-
modes, the duality constraint r ∗ Hn = cFn is imple-
mented through integrating out Hn. We are thus left
with the proper action

Sn =

∫

− 1
2r

−1F̄n ∧ ∗Fn + i
2nc F̄n ∧DFn , (11)

where An, Bn only appear through Fn.
We are now in a position to write down the total action

in D − 1 dimensions. It reads

S =

∫

− 1
2r

−1F ∧ ∗F + 1
2c A

0 ∧F ∧ F

+
∞
∑

n=1

∫

−r−1F̄n ∧ ∗Fn + i
nc F̄n ∧DFn . (12)

Note that we sum (11) over positive n only, thanks to
the reality conditions on An, Bn.
It is worth pointing out that the physical degrees of

freedom of excited modes can be described in terms of a
massive p-form Bn only. In fact, the gauge symmetry (6)
can be fixed imposing the condition An = 0, thus setting
Fn = inBn. As a result, the second line of (12) becomes

∞
∑

n=1

∫

−n2r−1B̄n ∧ ∗Bn + icn B̄n ∧DBn . (13)

The classical mass is mn = (n2r−1)(cn)−1 = cnr−1.
Note that (13) is invariant under local U(1) transfor-

mations of the complex p-form Bn gauged by A0. In [6]
this gauging is absent, and therefore it is possible to in-
tegrate out the real or imaginary part of Bn consistently.
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[Bonetti,TG,Hohenegger]

[Townsend etal.]
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Part III:  Topological terms and constraints

24

Monday, July 9, 2012



  Basic idea: 

➡ in 6D F-theory compactifications on CY   :
‣ effective theory:   strong constraints from anomalies (gauge+gravitational...)

‣ F-theory geometry:   topological properties of resolved elliptic fibrations
                                     can be matched with the anomaly constraints 
⇒  relating terms in the effective action and spectrum  (Green-Schwarz)

➡ in 4D F-theory compactifications on CY   :
‣ F-theory geometry:    various topological properties genuine to consistent 

                                      compactification

⇒   Can one relate terms in the effective action and spectrum despite the  
       absence of certain anomalies?  Are there universal constraints?
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3

[TG,Taylor] 
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  4D topological terms

➡ to formulate constraints we also need topological terms - axion couplings
‣ topological terms with 7-brane gauge field 

‣ topological terms involving curvature

→ our derivation using orientifold limit   (likely also via M-theory as in 6D/5D)

‣ higher curvature terms are crucial to determine 7-brane configuration:
discriminant: 

26

�
bαχαTr(F ∧ F ) [S] = bαωα location of 7-branes in B3

�
aαχαtr(R ∧R)

[TG,Taylor] 

canonical class of [K] = aαωα B3

[∆] = rank(G)[S] + [∆�]       locus only visible via 
higher curvature terms 
in effective action

I1
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  Constraints

➡ Relating the moduli spectrum to couplings:   (no anomaly interpretation)

define      
‣ no gauge group  

‣ including gauge group, but no charged matter

➡ complications from a general 4D theory:
‣ distinguish the moduli fields (all chiral multiplets in 4D), as in 5D
‣ scalar potential e.g. due to fluxes  →  focus on light fields
‣ corrections and additional axion-(curvature)   , 

e.g. dilaton-axion at weak string coupling, additional het. axion
27

derivation of Euler 
number of fourfold
[Sethi,Vafa,Witten]
[Andreas,Curio]

2

��x, y, z�� := Kαβγx
αyβzγ

39− 60��a, a, a�� = Ccs + Csa − C21 + rG +
1

6
rG(cG + 1)��a+ b, a+ b, b��

39− 60��a, a, a�� = Ccs + Csa − C21

[TG,Taylor]

complex str. Kähler + 
axion

axion+axion
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  Conclusions

➡ M-theory to F-theory limit is powerful (double-dimensional reduction)  
‣ importance of Chern-Simons terms:   study theory and formulate constraints

loop corrections ↔ classical M-theory results 

‣ importance of Kaluza-Klein modes in circle reduction:
6D self-dual tensors → Kaluza-Klein modes: interesting action, induce new couplings

‣ key properties of F-theory compactifications encoded by topological terms
→  might lead to interesting constraints beyond anomaly conditions 

➡ Many open questions: 
‣ M5-branes instantons behave non-trivially in the M-theory to F-theory limit

‣ extend constraint analysis in 4D, including fluxes and potentials
‣ constraining continuos parameters 
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[Cvetič,TG,Halverson,Klevers]  in progress
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The End. 
Thank you!
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  Gauge theory and singularities

➡ a closer look at the resolution space:  e.g. single stack of branes

‣

30

B3

S

Σ

Σ

A1
A2

SU(2) gauge theory on S 

S ⊂ B34D:  - gauge theory on surface 4-cycle             

         - further enhancement along intersection curve      (2-cycle) of two 7-branes
          ⇒  matter representations R
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  Classical 5D Chern-Simons terms

➡ 5D Chern-Simons actions:   

‣ topological              - terms are given by second Chern class of    

‣ have to use non-trivial geometric facts for Chern-classes 
of  elliptic fibrations:  (e.g. for smooth elliptic fibrations)

➡ 5D terms lift to be part of 6D Green-Schwarz term → M-theory deriv. of 
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�
bαΩαβA

β ∧ (CijF
i ∧ F j) [S] = bαωα location of 7-branes in B2

�
aαΩαβA

β ∧ tr(R ∧R) canonical class of B2[K] = aαωα

[Antoniadis,Ferrara,Minasian,Narain]
tr(R2) C̃Y 3

c2(C̃Y 3) = c2(B2) + 11c21(B2)+12c1(B2) ∧ ωB2

(bα, aα)

compare with [Kumar,Morrison,Taylor] [Park,Taylor]
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