Fluxes and Chern-Simons Theories for F-theory

Thomas W. Grimm

Max Planck Institute for Physics, Munich (Werner-Heisenberg-Institut)

Chirality + Flux: 1111.1232 [hep-th] with H. Hayashi
6d + Chiral tensors: 1111.1232 [hep-th] with F. Bonetti
1206.1600 [hep-th] with F. Bonetti, S. Hohenegger

Constraints: 1204.3092 [hep-th] with W. Taylor

Introduction and Motivation

Systematics of compactifications

- Fundamental theory (String/M-/F-theory)
\qquad Wilsonian effective action: integrate out massive states which are heavier than a certain energy scale
- Classifying the core data of the effective actions by discrete information:

$$
\vec{N}=\left(\begin{array}{l|l}
\vec{N}_{\text {geom }} & \begin{array}{l}
\text { topological data of the compactifications manifold } \\
\text { (Hodge-numbers, intersection numbers, Chern classes) }
\end{array} \\
\vec{N}_{\text {brane }}
\end{array} \begin{array}{l}
\begin{array}{l}
\text { topological data of the brane configuration } \\
\text { (number of branes, wrapping numbers, intersections...) }
\end{array} \\
\vec{N}_{\text {flux }}
\end{array}\right) \text { flux data, bulk + brane }
$$

- field dynamics is encoded by effective action effective potential, vacua, ... phenomenology

Looking for the unifying setup...

- ideally: look for unifying fundamental setup where Type IIA/IIB and the various branes are just different aspects
\Rightarrow M-theory in 11d
- major drawback: $\quad \mathbb{M}^{p} \times X_{11-p} \quad$ effective theory in even dim.
\Rightarrow internal manifold is odd dim.

F-theory provides an ideal setup for:
(1) unifying 7-brane and bulk physics $\vec{N}_{\text {brane }} \& \vec{N}_{\text {geom }}$ in complex geometries
(2) promising phenomenological scenarios (GUTs, moduli stabilization)

Obstacles in the study of F-theory

- contrast to string/M-theory: no 12-dimensional F-theory effective action also: fundamental formulation is poorly understood
- F-theory physics is often studied using limits and dualities:
, weak coupling limit with D7-branes and O7-planes
, F-theory / heterotic duality
- local geometries
- Only known way to extract generic features of F-theory effective actions is via its formulation as a limit of M-theory.
- Remark: if objects like G_{4} - flux and M5-branes are used in the context of F- theory this limit is always understood

Goals of this talk:

- Part I: Derive 4D chiral index for F-theory compactifications using M-theory G_{4}-flux in the F-theory limit
- Part II: Study corrections to the Chern-Simons terms due to KaluzaKlein modes as predicted by M-theory
- Part III: Comment on constraints imposed by F-theory
- Message: - F-theory effective action can be reliably studied:
bulk + 7-brane physics in a unified $N=1$ framework
- M-theory origin of various F-theory effects can be unexpected

F-theory via M-theory

F-theory compactifications

- Type IIB has non-perturbative $\operatorname{Sl}(2, \mathbb{Z})$ symmetry rotating $\tau=C_{0}+i e^{-\phi}$ \Rightarrow interpret τ as complex structure of a two-torus (2 auxiliary dimensions)
- minimally supersymmetric F-theory compactifications:
- F-theory on torus fibered Calabi-Yau 4-fold Y_{4}
$\Rightarrow 4 \mathrm{dim}, \mathrm{N}=1$ supergravity theory
\Rightarrow base B_{3} is a Kähler manifold

- singularities of the fibration are crucial to encode 7-brane physics
\Rightarrow pinching torus indicates presence of 7-branes magn. charged under τ
- brane and bulk physics encoded by complex geometry

F-theory via M-theory

- F-theory viewed as auxiliary `12 dim.' theory (torus volume unphysical)
- F-theory effective actions has to be studied via M-theory

Consider M-theory on space $T^{2} \times M_{9}$
τ is the complex structure modulus of the $T^{2}, \quad v$ volume of T^{2}

F-theory limit:

(1) A-cycle: if small than M-theory becomes Type IIA
(2) B-cycle: T-duality \Rightarrow Type IIA becomes Type IIB, τ is indeed dilaton-axion
(3) grow extra dimension: send $v \rightarrow 0$ than T -dual B -cycle becomes large

- can be generalized for singular T^{2} fibrations: e.g. Taub-NUT $\rightarrow \mathrm{D} 6 \rightarrow \mathrm{D} 7$

F-theory / M-theory geometries

- F-theory geometries can be constructed and analyzed
- singularities of elliptic fibration induce non-Abelian gauge symmetry
, singularity resolution:
(resolution at each codimension)

- Examples: compact, fully resolved Calabi-Yau three- / fourfolds \Rightarrow toric geometry: numerous examples + various types of gauge groups
- Unification of $\vec{N}_{\text {geom }}$ and $\vec{N}_{\text {brane }}$ on resolved Calabi-Yau manifolds
\Rightarrow bulk and 7-brane geometries systematically classified by smooth higher-dimensional complex geometries!

M-theory on resolved CY manifolds

- physical interpretation of resolution only possible in M-theory
- moving branes apart on the B-circle:

Coulomb branch of the lower-dimensional gauge theory:

$$
G \rightarrow U(1)^{\mathrm{rank} G}
$$

- Massive states from M2 branes on geometric 2-cycles:
- M2-branes on resolution \mathbb{P}^{1},s over generic points of S \Rightarrow massive `W-bosons' of G-breaking
- M2-branes on resolution \mathbb{P}^{1},s over intersection
\Rightarrow massive matter multiplets
- M2-branes on the elliptic fiber \Rightarrow massive Kaluza-Klein modes
- All massive states have to be integrated out to determine Wilsonian effective action \Rightarrow in circle compactification also KK-modes are crucial!!

4D F-theory effective actions via M-theory

- effective actions can be computed via M-theory / 11-dimensional supergravity on the resolved Calabi-Yau fourfolds

F-theory on singular CY_{4}
'Gauge bundle'
4d, N=1 effective theory with non-Abelian gauge symmetry G circle compactification

3d, N=2 effective theory pushed to 3d Coulomb branch: $U(1)^{\mathrm{rk} G}$

- explicit: N=1 characteristic data determining the action

M-theory on resolved $\widetilde{\mathrm{CY}}_{4}$ G_{4} - flux
$3 \mathrm{~d}, \mathrm{~N}=2$ effective theory with only abelian gauge symmetries

compare

 [TG, Savelli] [TG, Hayashi] [TG,Klevers,Poretschkin]
Part I: Chiral index from flux

Finally facing F-theory fluxes for fibered fourfolds

- specification of flux bundle in F-theory is hard spectral cover-type methods, link to weak coupling
- M-theory dual model on fully resolved $\widetilde{\mathrm{CY}}_{4}$: non-Abelian groups: new resolution two-forms (dual to resolution divisors)
$\omega_{i} \quad i=1, \ldots, \operatorname{rank}(G) \quad$ fully resolved geometry has new intersection numbers (compute explicitly):

$$
\int \omega_{i} \wedge \omega_{j} \wedge \omega_{k} \wedge \omega_{l}
$$

extra $\mathrm{U}(1)$'s: new resolution two-forms

$$
\tilde{\omega}_{m} \quad m=1, \ldots, n_{\mathrm{U}(1)}
$$

- M-theory fluxes we consider:

$$
G_{4}=m^{\Sigma \Lambda} \omega_{\Sigma} \wedge \omega_{\Lambda}
$$

- $m^{\Sigma \Lambda}$ subject to vanishing conditions to lift to F-theory
- $m^{\Sigma \Lambda}$ subject to quantization conditions (Freed-Witten) [Collinucci,Savelli]

F-theory chiral spectrum via M-theory

- determination of charged chiral spectrum is much harder:
- chirality induced by fluxes on 7-branes, but in M-theory on resolved 4 -fold there are no chiral fields
- Chirality formulas for M/F-theory setups?

$$
\begin{aligned}
& \chi(\mathbf{R})=\int_{S_{\mathbf{R}}} G_{4} \\
& G_{4}=\left\langle d C_{3}\right\rangle \quad \text { flux on resolved fourfold }
\end{aligned}
$$

[Braun,Collinucci, Valandro] [Marsano,Schäfer-Nameki]
[Krause,Mayrhofer,Weigand] [TG,Hayashi]
[Intriligator,Jockers,Mayr, Morrison,Plesser]
[Küntzler,Schäfer-Nameki]

- 3D one-loop Chern-Simons terms linked to 4D chiral index $\chi(\mathbf{R})$
, 3D M-theory Chern-Simons terms computes anomaly free chiral spectrum
[TG,Hayashi]
[TG,Klevers] in progress

3D Chern-Simons vs. 4D chiral matter

- 3d Chern-Simons terms:

$$
S_{\mathrm{CS}}^{(3)}=\int \Theta_{i j} A^{i} \wedge F^{j} \quad U(1)^{\mathrm{rk} G}
$$

- No such terms from classical circle reduction of $4 \mathrm{~d}, \mathrm{~N}=1$ theory
\Rightarrow generated at one loop by massive fermions

$$
\Theta_{i j}^{1-\text { loop }}=\frac{1}{2} \sum_{\text {rep }} n_{\mathrm{rep}} \sum_{\lambda \in W(\mathrm{rep})} \lambda_{i} \lambda_{j} \operatorname{sign}\left(w_{k} \xi^{i}\right) \quad \text { [Aharony,Hanany,Intriligator }
$$

- M-theory on resolved $\widetilde{\mathrm{CY}}_{4}$ has classical Chern-Simons term:

$$
\Theta_{i j}^{\mathrm{flux}}=\int_{\widetilde{\mathrm{CY}}_{4}} G_{4} \wedge \omega_{i} \wedge \omega_{j}
$$

- G_{4} fluxes on $\widetilde{\mathrm{CY}}_{4}$ count 4D chiral matter spectrum massive in the 3D Coulomb branch \Rightarrow determine chiral index $\quad \Theta_{i j}^{1-\text { loop }}=\Theta_{i j}^{\text {flux }}$
- 4D anomaly induced by chiral matter is captured by 3D Chern-Simons term at one loop in the Coulomb branch (F-theory vs. M-theory)

Examples: with or without U(1)

- M-theory fluxes which do not break SU(5) gauge group consider e.g. base $\mathbb{P}^{2} \times \mathbb{P}^{1}$
(1) toric construction of fully resolved CY_{4}
(2) computation of intersection numbers: fluxes of form $G_{4}=m^{i j} \omega_{i} \wedge \omega_{j}$
(3) computation of Mori cone to evaluate: $\operatorname{sign}\left(\int_{\Sigma} J\right) \quad$ [Marsano,Schäfer-
\Rightarrow compute chirality by using one-loop equation
- $\mathrm{U}(1)$ restricted Tate model: simple way to globally obtain geometrically massless $U(1)$ for a fourfold
\Rightarrow same program can be applied for fluxes of the form $G_{4}=F_{U(1)} \wedge \omega_{U(1)}$
- Algorithmic implementation and model searches are possible!
\Rightarrow scanning over Kreuzer-Skarke list for fourfolds....

Part II: Kaluza-Klein modes in M- to F-theory duality

Extending M-theory to F-theory limit

- Comparing geometrically large M-theory compactification with circle compactification requires to integrate out Kaluza-Klein modes
- one-loop corrections to Chern-Simons terms do not depend on mass of the modes in the loop:
key example: Kaluza-Klein theory of S^{1} - compactification from D to $D-1$ dimensions (D even)

$$
k_{\mathrm{KK}} \int_{M_{D-1}} A^{0} \wedge F^{0} \wedge \ldots \wedge F^{0}
$$

KK-vector $d s_{D}^{2}=r^{2}\left(d y+A^{0}\right)^{2}+d s_{D-1}^{2}$
k_{KK} only arise at one loop due to integrated out KK-modes

- match of 5D M-theory compactifications and 6D F-theory reveals physics of self-dual tensors in 6D
[Bonetti,TG]
[Bonetti,TG,Hohenegger]

Tool: anomaly cancellation in 6D, $\mathrm{N}=1$ Sugra

- anomalies cancel among the fields: e.g. $\operatorname{tr}\left(R^{4}\right)$ - gravitational anomaly

- Green-Schwarz mechanism to cancel residual anomaly [Sagnotti]

$$
S_{\mathrm{GS}}=\int B_{2}^{\beta} \Omega_{\alpha \beta} \wedge\left[a_{\text {constant anomaly vectors for } T+1 \text { tensors } B_{2}^{\beta}}^{\operatorname{tr}(R \wedge R)+b^{\alpha}} \operatorname{Tr}(F \wedge F)\right]
$$

e.g. $\operatorname{tr}\left(R^{2}\right)^{2}$ - gravitational anomaly

$$
a^{\alpha} \Omega_{\alpha \beta} a^{\beta}=9-T
$$

Derivation for F-theory via M-theory

- start with topological terms of 11D sugra:
fourth order polynomial in

$$
S_{\mathrm{CS}}^{(11)}=\int C_{3} \wedge G_{4} \wedge G_{4}+\int C_{3} \wedge I_{8}(R)
$$

- expand M-theory three-form along $H^{2}\left(\tilde{C Y}{ }_{3}\right)$

$$
C_{3}=A^{0} \wedge \omega_{B_{2}}+A^{\alpha} \wedge \omega_{\alpha}+A^{i} \wedge \mathrm{w}_{i}
$$

$$
\begin{aligned}
& \omega_{B_{2}} \text { base } \rightarrow A^{0} \text { is } \mathrm{KK} \text { vector } \\
& \text { in going from } 6 \mathrm{D} \text { to } 5 \mathrm{D}
\end{aligned}
$$

ω_{α} pulled back from the base $\rightarrow A^{\alpha} 6 \mathrm{D}$ tensors
w_{i} resolution of gauge sing.
$\rightarrow A^{i} 6 \mathrm{D}$ vectors (Cartans)

- insert KK-ansatz into 11D topological terms
\rightarrow read off: e.g.

$$
a^{\alpha}=K^{\alpha} \quad[K]=K^{\alpha} \omega_{\alpha} \quad \text { canonical class of base } B_{2}
$$

New Chern-Simons terms at one loop

- M-theory on $\widetilde{C Y}_{3}$: extra Chern-Simons terms with no classical KK analog, e.g.
(1) $\int \mathcal{K}_{i j k} A^{i} \wedge F^{j} \wedge F^{k}$ three exceptional indices: singularity structure \rightarrow one loop: massive W -bosons + charged matter gauge theory comp: [Witten],[Intriligator,Morrison,Seiberg]
(2) $\int \Omega_{\alpha \beta} K^{\alpha} K^{\beta} A^{0} \wedge F^{0} \wedge F^{0}$ three times base: use for ell. fibrations $\omega_{0}^{2}=[K] \wedge \omega_{0}$ \rightarrow one loop: massive KK modes for all 6D fermions and 6D tensors
\rightarrow eff. theory: $\quad \Omega_{\alpha \beta} K^{\alpha} K^{\beta}=9-T$
[Bonetti,TG,Hohenegger]
(3) $\int\left(c_{2}\right)_{0} A^{0} \wedge \operatorname{tr}(R \wedge R) \quad$ M-theory prediction: $\quad\left(c_{2}\right)_{0}=48-4 T$
eff. theory derivation is not known
- 6D anomaly cancellation \rightarrow relations among 5D CS-coefficients \& spectrum

6D Self-dual tensors and their KK-action

- $A^{0} \wedge F^{0} \wedge F^{0}$ coupling cannot only be generated by KK-fermions: also KK-modes of self-dual tensors need to run in loop
- Kaluza-Klein inspired action:

KK-ansatz $\quad \hat{B}=\sum_{n \in \mathbb{Z}} e^{i n y}\left[B_{n}+A_{n} \wedge\left(d y+A^{0}\right)\right]$

$$
\begin{aligned}
S=\int & -\frac{1}{2} r^{-1} \mathcal{F} \wedge * \mathcal{F}+\frac{1}{2} c A^{0} \wedge \mathcal{F} \wedge \mathcal{F} \\
& +\sum_{n=1}^{\infty} \int-r^{-1} \overline{\mathcal{F}}_{n} \wedge * \mathcal{F}_{n}+\frac{i}{n} c \overline{\mathcal{F}}_{n} \wedge \mathcal{D} \mathcal{F}_{n}
\end{aligned}
$$

$$
\mathcal{F}_{n}=\mathcal{D} A_{n}+i n B_{n}
$$

$$
\mathcal{D}=d-i n A^{0}
$$

[Bonetti,TG,Hohenegger]
self-dual tensors have in 5D KK-tensor modes with Chern-Simons kinetic terms
[Townsend etal.]

- Computed contribution of all KK-modes of N=1, 6D sugra:
e.g. tensors

(b)

$$
k_{\mathrm{KK}} \propto 9-T
$$

Part III: Topological terms and constraints

Basic idea:

- in 6D F-theory compactifications on CY_{3} :
- effective theory: strong constraints from anomalies (gauge+gravitational...)
- F-theory geometry: topological properties of resolved elliptic fibrations can be matched with the anomaly constraints
\Rightarrow relating terms in the effective action and spectrum (Green-Schwarz)
- in 4D F-theory compactifications on CY_{4} :
- F-theory geometry: various topological properties genuine to consistent compactification
\Rightarrow Can one relate terms in the effective action and spectrum despite the absence of certain anomalies? Are there universal constraints?

4D topological terms

- to formulate constraints we also need topological terms - axion couplings
- topological terms with 7-brane gauge field

$$
\int b^{\alpha} \chi_{\alpha} \operatorname{Tr}(F \wedge F) \quad \longrightarrow \quad[S]=b^{\alpha} \omega_{\alpha} \quad \text { location of 7-branes in } B_{3}
$$

- topological terms involving curvature

$$
\int a^{\alpha} \chi_{\alpha} \operatorname{tr}(R \wedge R) \quad \longrightarrow \quad[K]=a^{\alpha} \omega_{\alpha} \quad \text { canonical class of } B_{3}
$$

\rightarrow our derivation using orientifold limit (likely also via M-theory as in 6D/5D)

- higher curvature terms are crucial to determine 7-brane configuration: discriminant:

$$
[\Delta]=\operatorname{rank}(G)[S]+\left[\Delta^{\prime}\right] \longleftarrow \begin{aligned}
& I_{1} \text { locus only visible via } \\
& \text { higher curvature terms } \\
& \text { in effective action }
\end{aligned}
$$

Constraints

- Relating the moduli spectrum to couplings: (no anomaly interpretation)
define $\langle\langle x, y, z\rangle\rangle:=\mathcal{K}_{\alpha \beta \gamma} x^{\alpha} y^{\beta} z^{\gamma}$

no gauge group	complex str. Kähler + axion
$39-60\langle\langle a, a, a\rangle\rangle=$	$C_{\mathrm{cs}}+C_{\mathrm{sa}}-C_{21} \longleftarrow$ axion+axion

- including gauge group, but no charged matter
derivation of Euler number of fourfold [Sethi,Vafa,Witten] [Andreas,Curio]
$39-60\langle\langle a, a, a\rangle\rangle=C_{\mathrm{Cs}}+C_{\mathrm{sa}}-C_{21}+r_{G}+\frac{1}{6} r_{G}\left(c_{G}+1\right)\langle\langle a+b, a+b, b\rangle\rangle$
- complications from a general 4D theory:
- distinguish the moduli fields (all chiral multiplets in 4D), as in 5D
, scalar potential e.g. due to fluxes \rightarrow focus on light fields
- corrections and additional axion-(curvature) ${ }^{2}$, e.g. dilaton-axion at weak string coupling, additional het. axion

Conclusions

- M-theory to F-theory limit is powerful (double-dimensional reduction)
- importance of Chern-Simons terms: study theory and formulate constraints loop corrections \leftrightarrow classical M-theory results
- importance of Kaluza-Klein modes in circle reduction:

6 D self-dual tensors \rightarrow Kaluza-Klein modes: interesting action, induce new couplings

- key properties of F-theory compactifications encoded by topological terms
\rightarrow might lead to interesting constraints beyond anomaly conditions
- Many open questions:
- M5-branes instantons behave non-trivially in the M-theory to F-theory limit
[Cvetič,TG,Halverson,Klevers] in progress
- extend constraint analysis in 4D, including fluxes and potentials
- constraining continuos parameters

The End. Thank you!

Gauge theory and singularities

- a closer look at the resolution space: e.g. single stack of branes

4D: - gauge theory on surface 4-cycle $S \subset B_{3}$

- further enhancement along intersection curve Σ (2-cycle) of two 7-branes
\Rightarrow matter representations \boldsymbol{R}

$\cdots S U(2)$ gaiuge theory on S

Classical 5D Chern-Simons terms

- 5D Chern-Simons actions:

$$
\begin{array}{cll}
\int b^{\alpha} \Omega_{\alpha \beta} A^{\beta} \wedge\left(C_{i j} F^{i} \wedge F^{j}\right) & \longrightarrow & {[S]=b^{\alpha} \omega_{\alpha}}
\end{array} \text { location of 7-branes in } B_{2} .
$$

, topological $\operatorname{tr}\left(R^{2}\right)$ - terms are given by second Chern class of $\tilde{C Y} Y_{3}$
, have to use non-trivial geometric facts for Chern-classes of elliptic fibrations: (e.g. for smooth elliptic fibrations)

$$
c_{2}\left(\tilde{C Y} Y_{3}\right)=c_{2}\left(B_{2}\right)+11 c_{1}^{2}\left(B_{2}\right)+12 c_{1}\left(B_{2}\right) \wedge \omega_{B_{2}}
$$

- 5D terms lift to be part of 6D Green-Schwarz term \rightarrow M-theory deriv. of $\left(b^{\alpha}, a^{\alpha}\right)$ compare with [Kumar,Morrison,Taylor] [Park,Taylor]

