New $\mathcal{N}=1$ dualities from contracting orientifolds

Iñaki García-Etxebarria

12th July, 2012
in collaboration with B. Heidenreich and T. Wrase to appear soon

Dualities in field theory and string theory

Equivalence of two different descriptions of a physical system, either as exactly equivalent and complementary descriptions:

- IIB $/ \mathcal{N}=4$ S-duality
- T-duality (and mirror symmetry)
- AdS/CFT
- ...
or, slightly more generally, various different UV descriptions of the same IR physics (Seiberg duality).

Stringy realization of $\mathcal{N}=4$ duality

Can be realized on a $O 3^{ \pm} / D 3$ system in flat space: The four versions of the orientifold are distinguished by discrete $R R$ and NSNS 2-form fluxes B_{2}, C_{2} in the transverse space:

$$
H^{3}\left(S^{5} / \mathbb{Z}_{2}, \widetilde{\mathbb{Z}}\right)=\mathbb{Z}_{2} .
$$

IIB $S L(2, \mathbb{Z})$ exchanges the configurations. [Witten:hep-th/9805112]

- $O 3^{-}+N D 3 s \longrightarrow S O(2 N)$
- $\widetilde{O 3^{-}}+N D 3 s \longrightarrow S O(2 N+1)$
- $O 3^{+}+N D 3 s \longrightarrow U S p(2 N)$
- $\widetilde{O 3^{+}}+N D 3 s \longrightarrow U S p(2 N)$

Under S-duality

$$
\widetilde{O 3^{-}} \longleftrightarrow O 3^{+} \quad: \quad S O(2 N+1) \longleftrightarrow U S p(2 N)
$$

Stringy realization of $\mathcal{N}=4$ duality

Under S-duality

$$
\widetilde{O 3^{-}} \longleftrightarrow O 3^{+} \quad: \quad S O(2 N+1) \longleftrightarrow U S p(2 N)
$$

Orientifolding $\mathbb{C}^{3} / \mathbb{Z}_{3}$

Orbifolding $\mathcal{N}=4$ duality

Consider the orientifold action with generators $\left\{\mathcal{R}, \mathcal{I} \Omega(-1)^{F_{L}}\right\}$:

$$
\begin{gathered}
\mathcal{R}:(x, y, z) \longrightarrow(\omega x, \omega y, \omega z) \\
\mathcal{I}:(x, y, z) \longrightarrow(-x,-y,-z)
\end{gathered}
$$

with $\omega=\exp (2 \pi i / 3)$.

A proposed $\mathcal{N}=1$ duality

	$U S p(\widetilde{N}+4)$	$S U(\widetilde{N})$	$S U(3)$	$U(1)_{R}$	\mathbb{Z}_{3}
A^{i}	$\bar{\square}$	\square	\square	$\frac{2}{3}-\frac{2}{N}$	1
B^{i}	1	$\bar{\square}$	\square	$\frac{2}{3}+\frac{4}{\tilde{N}}$	-2

(here $\tilde{N} \in 2 \mathbb{Z}$) is dual to

	$S O(N-4)$	$S U(N)$	$S U(3)$	$U(1)_{R}$	\mathbb{Z}_{3}
A^{i}	$\bar{\square}$	\square	\square	$\frac{2}{3}+\frac{2}{N}$	1
B^{i}	1	$\bar{\boxminus}$	\square	$\frac{2}{3}-\frac{4}{N}$	-2

in both cases with $W=\frac{1}{2} \epsilon_{i j k} \operatorname{Tr} A^{i} A^{j} B^{k}$.
Global anomalies, the moduli spaces and the spectrum of operators match if $\widetilde{N}=N-3$. (As far as we have been able to check so far.)

Superconformal index matching

A very powerful and refined indicator of duality comes from putting the theory on $S^{3} \times \mathbb{R}$, and computing the index [Romelsberger:hep-th/0510060,0707.3702], [Kinney, Maldacena, Minwalla, Raju:hep-th/0510251]:

$$
\begin{equation*}
\mathcal{I}(t, x, f)=\int d g \operatorname{Tr}(-1)^{F} e^{-\beta \mathcal{H}} t^{\mathcal{R}} x^{2 \bar{J}_{3}} f g \tag{1}
\end{equation*}
$$

with $2 \mathcal{H}=\left\{Q, Q^{\dagger}\right\}$. For $S O(3) \times S U(7) \leftrightarrow U S p(8) \times S U(4)$ we get:

$$
\begin{aligned}
\mathcal{I}_{S O / U S p}(t, x, f)= & 1+t^{\frac{2}{3}}\left[\chi_{0,2}(f)+\chi_{4,0}(f)\right] \\
& +t^{\frac{4}{3}}\left[2 \chi_{0,4}(f)+2 \chi_{2,0}(f)+\chi_{3,1}(f)+2 \chi_{4,2}(f)+\chi_{8,0}(f)\right] \\
& +t^{\frac{5}{3}}\left(x+x^{-1}\right)\left[\chi_{0,2}(f)+\chi_{4,0}(f)\right] \\
+ & t^{2}\left[3 \chi_{0,6}(f)+\chi_{12,0}(f)+\chi_{1,4}(f)+5 \chi_{2,2}(f)+3 \chi_{3,3}(f)\right. \\
& +2 \chi_{4,1}(f)+3 \chi_{4,4}(f)+\chi_{5,2}(f)+4 \chi_{6,0}(f)+\chi_{6,3}(f) \\
& \left.\quad+\chi_{7,1}(f)+2 \chi_{8,2}(f)+4\right]+\ldots
\end{aligned}
$$

A proposed $\mathcal{N}=1$ duality

Forgetting the change in rank, this seems to be essentially a $S O \leftrightarrow U S p$ duality, as in $\mathcal{N}=4$ under S-duality.

A proposed $\mathcal{N}=1$ duality

Forgetting the change in rank, this seems to be essentially a $S O \leftrightarrow U S p$ duality, as in $\mathcal{N}=4$ under S-duality.

What is going on microscopically?
Why the change in rank? $(\widetilde{N}=N-3)$
Can we derive the duality from the known properties of IIB under S-duality?

A proposed $\mathcal{N}=1$ duality

Forgetting the change in rank, this seems to be essentially a $S O \leftrightarrow U S p$ duality, as in $\mathcal{N}=4$ under S-duality.

What is going on microscopically?
Why the change in rank? $(\widetilde{N}=N-3)$
Can we derive the duality from the known properties of IIB under S-duality?

Plan of attack

(1) Reformulate the problem in terms of large volume objects: D7 branes and $O 7$ planes wrapping a vanishing 4-cycle.
(2) Read the action on the branes from known (or at least more understandable) 10 d results in flat space.

A proposed $\mathcal{N}=1$ duality

Forgetting the change in rank, this seems to be essentially a $S O \leftrightarrow U S p$ duality, as in $\mathcal{N}=4$ under S-duality.

What is going on microscopically?
Why the change in rank? $(\widetilde{N}=N-3)$
Can we derive the duality from the known properties of IIB under S-duality?

Plan of attack

(1) Reformulate the problem in terms of large volume objects: $D 7$ branes and $O 7$ planes wrapping a vanishing 4-cycle.
(2) Read the action on the branes from known (or at least more understandable) 10 d results in flat space.

String picture already provides classification of expected theories, by Witten's argument [Witten:hep-th/9805112]:

$$
H^{3}\left(X_{5} / \mathbb{Z}_{2}, \widetilde{\mathbb{Z}}\right)=\mathbb{Z}_{2}
$$

Outline

(1) Introduction
(2) (Mostly) Review
(3) Microscopic description of $\mathbb{C}^{3} / \mathbb{Z}_{3}$
(4) The duality as S-duality
(5) An aside: ærientifolds (quantum orientifolds)
(6) Conclusions
(1) Introduction
(2) (Mostly) Review

- Branes at singularities and the derived category
- Orientifolds in the derived category
(3) Microscopic description of $\mathbb{C}^{3} / \mathbb{Z}_{3}$
(4) The duality as S-duality
(5) An aside: ærientifolds (quantum orientifolds)
(6) Conclusions

Branes at singularities as large volume objects

We can think of the fractional branes at the singularity as large volume D-branes continued to small volume, receiving strong α^{\prime} corrections.

These α^{\prime} corrections affect the conditions for supersymmetry, and the masses of states, but we can still think of the object in large volume terms, and compute the chiral spectrum in that picture.
The right way of thinking about this, taking into account all the subtleties, is in terms of the derived category of coherent sheaves.
[Douglas:hep-th/0011017]

Branes at singularities as large volume objects

We can think of the fractional branes at the singularity as large volume D-branes continued to small volume, receiving strong α^{\prime} corrections.

These α^{\prime} corrections affect the conditions for supersymmetry, and the masses of states, but we can still think of the object in large volume terms, and compute the chiral spectrum in that picture.
The right way of thinking about this, taking into account all the subtleties, is in terms of the derived category of coherent sheaves. [Douglas:hep-th/0011017]

The subtleties are important for us, but for this talk, this just means (anti-) $D 7 \mathrm{~s}$ with vector bundles on top: $\mathcal{E}[n]$, with \mathcal{E} a bundle on the collapsing \mathbb{P}^{2} surface, and $n \in \mathbb{Z}$ distinguishes branes from anti-branes.

Orientifolds in the derived category

Given a $D 7$ brane wrapping $\mathcal{S}=\mathbb{P}^{2}$ with bundle $\mathcal{E}[n]$, an orientifold wrapping \mathcal{S} acts as:
[Diaconescu,Garcia-Raboso,Karp,Sinha:hep-th/0606180]

$$
i_{*} \mathcal{E}[n] \longrightarrow i_{*}\left(\mathcal{E}^{\vee} \otimes K_{\mathcal{S}}\right)[2-n]
$$

with $K_{\mathcal{S}}$ the canonical bundle of \mathcal{S}, and i the inclusion $i: \mathcal{S} \hookrightarrow X$ of \mathcal{S} in the ambient Calabi-Yau X. In the presence of a B-field, this generalizes to:

$$
i_{*} \mathcal{E}[n] \longrightarrow i_{*}\left(\mathcal{E}^{\vee} \otimes K_{\mathcal{S}} \otimes \mathcal{L}_{2 B}\right)[2-n]
$$

with $c_{1}\left(\mathcal{L}_{2 B}\right)=2 B$.
(1) Introduction
(2) (Mostly) Review
(3) Microscopic description of $\mathbb{C}^{3} / \mathbb{Z}_{3}$

- Without orientifold
- With orientifold
(4) The duality as S-duality
(5) An aside: ærientifolds (quantum orientifolds)
(6) Conclusions

$\mathbb{C}^{3} / \mathbb{Z}_{3}$ without orientifold

The three branes become mutually supersymmetric at $B=J=0$. [Aspinwall:hep-th/0403166]

Orientifold action

- $\mathcal{O}(-1)[0] \longleftrightarrow\left(\mathcal{O}(-1)^{\vee} \otimes \mathcal{O}(-3)\right)[2-0]=\mathcal{O}(-2)[2]$
$\rightsquigarrow S U$ factor.
- $\Omega[1] \longleftrightarrow\left(\Omega^{\vee} \otimes \bigwedge^{2} \Omega\right)[2-1]=\Omega[1]$
$\leadsto S O / U S p$ factor.

Number of chiral multiplets	Representation
$\left\langle\mathcal{E}_{i}, \mathcal{E}_{j}\right\rangle$	$\left(\square_{i}, \bar{\square}_{j}\right)$
$\left\langle\mathcal{E}_{i}, \mathcal{E}_{j}^{\prime}\right\rangle$	$\left(\square_{i}, \square_{j}\right)$
$\frac{1}{2}\left\langle\mathcal{E}_{i}, \mathcal{E}^{\prime}\right\rangle \pm \frac{1}{8}\left\langle e^{-B} \mathcal{E}_{i}, O 7^{ \pm}\right\rangle$	$(\varpi, 1)$
$\frac{1}{2}\left\langle\mathcal{E}_{i}, \mathcal{E}_{i}^{\prime}\right\rangle \mp \frac{1}{8}\left\langle e^{-B} \mathcal{E}_{i}, O 7^{ \pm}\right\rangle$	$(\square, 1)$

Here $\left\langle\mathcal{E}_{i}, \mathcal{E}_{j}\right\rangle$ counts the chiral multiplets between the branes:

$$
\left\langle\mathcal{E}_{i}, \mathcal{E}_{j}\right\rangle=\sum_{k}(-1)^{k} \int_{X} \Gamma^{(2 k)}\left(\mathcal{E}_{i}\right) \wedge \Gamma^{(6-2 k)}\left(\mathcal{E}_{j}\right),
$$

with $\Gamma\left(\mathcal{E}_{i}\right)$ the $R R$ charge vector of \mathcal{E}_{i}.

RR charge vectors

The RR charges for $D 7$ branes described by a bundle $\mathcal{E}[n]$ on \mathcal{S} are:

$$
\Gamma(\mathcal{E}[n])=(-1)^{n} \int_{\mathcal{S}} \operatorname{ch}(\mathcal{E}) \sqrt{\frac{\operatorname{Td}\left(T_{\mathcal{S}}\right)}{\operatorname{Td}\left(N_{\mathcal{S} \mid X}\right)}}
$$

while for a $O 7^{ \pm}$plane wrapping \mathcal{S} it is:

$$
\begin{aligned}
\Gamma\left(O 7^{ \pm}\right) & = \pm 8 \int_{\mathcal{S}} \sqrt{\frac{\hat{L}\left(T_{\mathcal{S}} / 4\right)}{\hat{L}\left(N_{\mathcal{S} \mid X} / 4\right)}} \\
& = \pm\left(8-\frac{\chi(\mathcal{S})}{6}\right)
\end{aligned}
$$

[Minasian,Moore:hep-th/9710230],
[Morales,Scrucca,Serone:hep-th/9812071], [Stefanski:hep-th/9812088], [Scrucca,Serone:hep-th/9903145]

RR charge vectors

$$
\begin{aligned}
\Gamma(\mathcal{O}(-1)[0]) & =[\mathcal{S}] \wedge\left(1+\frac{1}{2} \ell+\frac{1}{4} \ell^{2}\right) \\
\Gamma(\Omega[1]) & =[\mathcal{S}] \wedge\left(-2+\frac{1}{2} \ell^{2}\right) \\
\Gamma(\mathcal{O}(-2)[2]) & =[\mathcal{S}] \wedge\left(1-\frac{1}{2} \ell+\frac{1}{4} \ell^{2}\right) \\
\Gamma\left(O 7^{ \pm}\right) & = \pm[\mathcal{S}] \wedge\left(8-\frac{1}{2} \ell^{2}\right) .
\end{aligned}
$$

Notice:

- $\sum \Gamma\left(\mathcal{E}_{i}\right)=\ell^{2}$.
- $O 7^{+}+4 \Omega[1]$ cancels compact tadpoles.
- $O 7^{-}+4(\mathcal{O}(-1)[0]+\mathcal{O}(-2)[2])$ cancels compact tadpoles.

Microscopic description of the quiver

The quiver is thus given by, for $O 7^{+}$

	$U S p(\tilde{N}+4)$	$U(\tilde{N})$	$S U(3)$
A^{i}	$\bar{\square}$	\square	\square
B^{i}	1	$\bar{\square}$	\square

and for $\mathrm{O7}^{-}$:

	$S O(N-4)$	$U(N)$	$S U(3)$
A^{i}	$\bar{\square}$	\square	\square
B^{i}	1	$\bar{\square}$	\square

As we expected from CFT.

(1) Introduction

(2) (Mostly) Review
(3) Microscopic description of $\mathbb{C}^{3} / \mathbb{Z}_{3}$
(4) The duality as S-duality

- $O 7^{+}$at strong coupling
- Duality for $\mathbb{C}^{3} / \mathbb{Z}_{3}$
(5) An aside: ærientifolds (quantum orientifolds)

6) Conclusions

$O 7^{+}$at strong coupling

We need to understand the strongly coupled limit of the $O 7^{+}$in flat space. In F-theory, the $O 7^{+}$is given by a (frozen) singularity with D_{8} monodromy. [Witten:hep-th/9712028]

Such a monodromy can be achieved by considering a $B C A^{8}$ system, where A is a $(1,0) 7$-brane (a $D 7), B$ a $(1,1) 7$-brane, and C a $(1,-1)$ 7-brane.

$O 7^{+}$at strong coupling

We need to understand the strongly coupled limit of the $O 7^{+}$in flat space. In F-theory, the $O 7^{+}$is given by a (frozen) singularity with D_{8} monodromy. [Witten:hep-th/9712028]

Such a monodromy can be achieved by considering a $B C A^{8}$ system, where A is a $(1,0) 7$-brane (a $D 7$), B a $(1,1) 7$-brane, and C a $(1,-1)$ 7-brane. (The full story seems to be more complicated, and in M-theory at least a different, non-Weierstrass model for the singularity seems to be realized, but it is mysterious and harder to treat.
[Bershadsky,Pantev,Sadov:hep-th/9805056])

$O 7^{+}$at strong coupling

We need to understand the strongly coupled limit of the $O 7^{+}$in flat space. In F-theory, the $O 7^{+}$is given by a (frozen) singularity with D_{8} monodromy. [Witten:hep-th/9712028]
Such a monodromy can be achieved by considering a $B C A^{8}$ system, where A is a $(1,0) 7$-brane (a $D 7$), B a $(1,1) 7$-brane, and C a $(1,-1)$ 7-brane. (The full story seems to be more complicated, and in M-theory at least a different, non-Weierstrass model for the singularity seems to be realized, but it is mysterious and harder to treat.
[Bershadsky,Pantev,Sadov:hep-th/9805056])
Under S-duality, this configuration becomes $C B X_{(0,1)}^{8}$. We want to describe this as a $\mathrm{O7}^{-}$plane plus other 7 -branes.

$O 7^{+}$at strong coupling

S-duality

$$
O 7^{+} \longleftrightarrow O 7^{-}+4 A+4 X_{(0,1)}
$$

a)

b)

Application to the $\mathbb{C}^{3} / \mathbb{Z}_{3}$ example

In our case:

$$
\begin{aligned}
O 7^{+} & O 7^{-}+4(\mathcal{O}(-1)[0]+\mathcal{O}(-2)[2])+4(\widehat{\mathcal{O}(-1)}[0]+\widehat{\mathcal{O}(-2)}[2]) \\
& +n D 3 s
\end{aligned}
$$

Here n measures the mismatch in $D 3$ charge, due to choosing the fractional branes as the A branes. We have $n=-5$.
Starting with $O 7^{+}+4 \Omega[1]+\widetilde{N} D 3 s$, the dual is:

$$
\begin{aligned}
& O 7^{-}+4(\mathcal{O}(-1)[0]+\mathcal{O}(-2)[2])+4(\widehat{\mathcal{O}(-1)}[0]\widehat{\mathcal{O}(-2)[2]}+\widehat{\Omega[1]}) \\
&+(\widetilde{N}-5) D 3 s \\
&=O 7^{-}+4(\mathcal{O}(-1)[0]+\mathcal{O}(-2)[2])+(\widetilde{N}-1) D 3 s
\end{aligned}
$$

Application to the $\mathbb{C}^{3} / \mathbb{Z}_{3}$ example

In our case:

$$
\begin{aligned}
O 7^{+} & O 7^{-}+4(\mathcal{O}(-1)[0]+\mathcal{O}(-2)[2])+4(\widehat{\mathcal{O}(-1)}[0]+\widehat{\mathcal{O}(-2)}[2]) \\
& +n D 3 s
\end{aligned}
$$

Here n measures the mismatch in $D 3$ charge, due to choosing the fractional branes as the A branes. We have $n=-5$.
Starting with $O 7^{+}+4 \Omega[1]+\widetilde{N} D 3 s$, the dual is:

$$
\begin{array}{r}
O 7^{-}+4(\mathcal{O}(-1)[0]+\mathcal{O}(-2)[2])+4(\widehat{\mathcal{O}(-1)[0]}+\widehat{\mathcal{O}(-2)[2]}+\widehat{\Omega[1]}) \\
+(\widetilde{N}-5) D 3 s \\
=O 7^{-}+4(\mathcal{O}(-1)[0]+\mathcal{O}(-2)[2])+(\widetilde{N}-1) D 3 s
\end{array}
$$

$$
U S p(\tilde{N}+4) \times S U(\tilde{N}) \longleftrightarrow S O(\tilde{N}-1) \times S U(\tilde{N}+3)
$$

1) Introduction

(2) (Mostly) Review
(3) Microscopic description of $\mathbb{C}^{3} / \mathbb{Z}_{3}$
(4) The duality as S-duality
(5) An aside: ærientifolds (quantum orientifolds)
(6) Conclusions

Other orientifolds?

Clearly not $\mathcal{E}[n] \longrightarrow\left(\mathcal{E}^{\vee} \otimes K_{\mathcal{S}} \otimes \mathcal{L}_{2 B}\right)[2-n] \ldots$

Quantum symmetries

Three special points in the $\left(\mathbb{P}^{1}\right)$ Kähler moduli space of $\mathbb{C}^{3} / \mathbb{Z}_{3}$:

- Large volume: Monodromy around this point sends $B \rightarrow B+1$, or equivalently:

$$
\mathcal{M}_{L V}: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{O}(-1)
$$

- The conifold point: A brane $(\mathcal{O}(-1))$ becomes massless. Monodromy around this point gives:

$$
\mathcal{M}_{C}: \Gamma(\mathcal{E}) \rightarrow \Gamma(\mathcal{E})-\langle\mathcal{E}, \mathcal{O}(-1)\rangle \Gamma(\mathcal{O}(-1))
$$

- The quiver point: Monodromy around this point can be obtained as the inverse of the products of the monodromies above: [Aspinwall:hep-th/0403166]

$$
\mathcal{M}_{Q}=\left(\mathcal{M}_{L V} \mathcal{M}_{C}\right)^{-1}=\left(\begin{array}{ccc}
-\frac{1}{2} & 3 & 0 \\
\frac{1}{4} & -\frac{1}{2} & 0 \\
\frac{1}{8} & \frac{1}{4} & 1
\end{array}\right)
$$

Quantum orientifolds

We can thus dress the ordinary orientifold action by the quantum symmetry: [Brunner,Hori,Hosomichi,Walcher:hep-th/0401137] [Diaconescu,Garcia-Raboso,Karp,Sinha:hep-th/0606180]

$$
\mathcal{P}^{\prime}=\mathcal{M}_{Q}^{-1} \mathcal{P} \mathcal{M}_{Q}=\left(\begin{array}{ccc}
-\frac{1}{2} & 3 & 0 \\
\frac{1}{4} & \frac{1}{2} & 0 \\
\frac{1}{8} & -\frac{1}{4} & 1
\end{array}\right) .
$$

with

$$
\begin{aligned}
\mathcal{P}^{\prime} \mathcal{O}(-1)[0] & =\mathcal{O}(-1)[0] \\
\mathcal{P}^{\prime} \mathcal{O}(-2)[2] & =\Omega[1] \\
\mathcal{P}^{\prime} \Omega[1] & =\mathcal{O}(-2)[2]
\end{aligned}
$$

Quantum orientifolds

We can thus dress the ordinary orientifold action by the quantum symmetry: [Brunner,Hori,Hosomichi,Walcher:hep-th/0401137] [Diaconescu,Garcia-Raboso,Karp,Sinha:hep-th/0606180]

$$
\mathcal{P}^{\prime}=\mathcal{M}_{Q}^{-1} \mathcal{P} \mathcal{M}_{Q}=\left(\begin{array}{ccc}
-\frac{1}{2} & 3 & 0 \\
\frac{1}{4} & \frac{1}{2} & 0 \\
\frac{1}{8} & -\frac{1}{4} & 1
\end{array}\right) .
$$

with

$$
\begin{aligned}
\mathcal{P}^{\prime} \mathcal{O}(-1)[0] & =\mathcal{O}(-1)[0] \\
\mathcal{P}^{\prime} \mathcal{O}(-2)[2] & =\Omega[1] \\
\mathcal{P}^{\prime} \Omega[1] & =\mathcal{O}(-2)[2]
\end{aligned}
$$

Essential in other cases, for example $\mathcal{C}\left(d P_{1}\right)$.

(1) Introduction

(2) (Mostly) Review
(3) Microscopic description of $\mathbb{C}^{3} / \mathbb{Z}_{3}$
(4) The duality as S-duality
(5) An aside: ærientifolds (quantum orientifolds)
(6) Conclusions

Conclusions

- New class of possible $\mathcal{N}=1$ duals.
- The duality seems to follow from S-duality.
- Other examples: phase II of $\mathbb{C}^{3} / \mathbb{Z}_{3}$, phase II of $\mathcal{C}\left(\mathbb{F}_{0}\right)$, $\mathcal{C}\left(d P_{1}\right), \mathbb{C}^{3} / \mathbb{Z}_{k}, \ldots$
- Developed tools for analyzing orientifolds at small volume [Diaconescu, Garcia-Raboso, Karp, Sinha], [Brunner, Herbst], [Gao, Hori], [Franco, Hanany, Krefl, Park, Uranga, Vegh], ...
- Got some information about the strongly coupled behavior of the $O 7^{+}$(although still somewhat mysterious).

Open questions and future directions

- Understand better the behavior of the $O 7^{+}$at strong coupling.
- Role of K-theory tadpoles.
- Applications to model building.
- Stringy realization of strongly coupled $\mathcal{N}=1$ dynamics. [Sugimoto:1207.2203]
- Model building with branes at singularities.

Open questions and future directions

- Understand better the behavior of the $O 7^{+}$at strong coupling.
- Role of K-theory tadpoles.
- Applications to model building.
- Stringy realization of strongly coupled $\mathcal{N}=1$ dynamics. [Sugimoto:1207.2203]
- Model building with branes at singularities.
- Have fun playing around...

Stringy realization of Seiberg duality

Statement of the duality: $\mathcal{N}=1 S U\left(N_{c}\right)$ SQCD with N_{f} flavors flows to the same IR as $S U\left(N_{f}-N_{c}\right)$ with N_{f} flavors Q, \widetilde{Q}, a meson M, and a cubic superpotential $W=Q M \widetilde{Q}$.

It can typically be realized as motion in moduli space.

(7) Another example: the complex cone over \mathbb{F}_{0}

Complex cone over $\mathbb{F}_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$

Can be seen as a \mathbb{Z}_{2} orbifold of the conifold (so not an orbifold of flat space).

Also, from field theory it seems that there is a single possible orientifold one could take:

Complex cone over $\mathbb{F}_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$

Interestingly, the orientifold seems to require $B=\left(0, \frac{1}{2}\right)$. This agrees with what one expects from looking to the quiver locus in Kähler moduli space: [Aspinwall,Melnikov:hep-th/0405134]

Complex cone over $\mathbb{F}_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$

Taking $\mathcal{L}_{2 B}=\mathcal{O}(0,1)$ orientifold now acts as expected, giving:

$$
\begin{aligned}
\mathcal{O}(-1,0)[0] \longrightarrow & \left(\mathcal{E}^{\vee} \otimes K_{\mathcal{S}} \otimes \mathcal{L}_{2 B}\right)[2-n] \\
& =\mathcal{O}(1,0) \otimes \mathcal{O}(-2,-2) \otimes \mathcal{O}(0,1)[2-0] \\
& =\mathcal{O}(-1,-1)[2] \\
\mathcal{O}(-2,0)[1] \longrightarrow & \mathcal{O}(2,0) \otimes \mathcal{O}(-2,-2) \otimes \mathcal{O}(0,1)[2-1] \\
& =\mathcal{O}(0,-1)[1]
\end{aligned}
$$

Complex cone over $\mathbb{F}_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$

We can cancel the $O 7^{+}$tadpole by adding $4(\mathcal{O}(-2,0)[1]+\mathcal{O}(0,-1)[1])$. The resulting theory is given by:

$U(N)$	$U(N+4)$	$S U(2)_{1}$	$S U(2)_{2}$
\square	\square	\square	1
\square	1	1	\square
1	\square	1	\square

Alternatively, we can introduce a $\mathrm{O7}^{-}$, and cancel the tadpole by $4(\mathcal{O}(-1,0)[0]+\mathcal{O}(-1,-1)[2])$. The resulting theory is given by:

$$
\begin{array}{cc|cc}
U(N+4) & U(N) & S U(2)_{1} & S U(2)_{2} \\
\hline \square & \bar{\square} & \square & 1 \\
\square & 1 & 1 & \square \\
1 & \square & 1 & \square
\end{array}
$$

Complex cone over $\mathbb{F}_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$

We can cancel the $O 7^{+}$tadpole by adding $4(\mathcal{O}(-2,0)[1]+\mathcal{O}(0,-1)[1])$. The resulting theory is given by:

$U(N)$	$U(N+4)$	$S U(2)_{1}$	$S U(2)_{2}$
\square	$\bar{\square}$	\square	1
\square	1	1	\square
1	\square	1	\square

Alternatively, we can introduce a $\mathrm{O7}^{-}$, and cancel the tadpole by $4(\mathcal{O}(-1,0)[0]+\mathcal{O}(-1,-1)[2])$. The resulting theory is given by:

