-․

Franz Herzog

PhD student at ETH Zurich
in the group of
Babis Anastasiou

Collaborators:
Achilleas Lazopoulos, Stephan Buehler, Romain Mueller, Elisabetta Furlan

Non-linear mappings for NNLO

- Non-linear mappings:

- On the factorisation of overlapping singularities [arxiv:1011.4867]
- Developed a systematic approach towards factorising overlapping singularities with nonlinear mappings:
e.g.
$I=\int_{0}^{1} d x d y \frac{x^{\epsilon}}{x(a x+y)} \quad x \mapsto \frac{x(y / a)}{1-x+(y / a)} \quad \mapsto \int_{0}^{1} d x d y \frac{(x y)^{\epsilon}}{x y}(a(1-x)+y)^{-\epsilon}$
- Applying such mappings recursively we showed how one can factorise singularities typically occurring in NNLO QCD corrections:
- Found mappings for double real corrections to the hadronic production of a massive system.
- Factorised singularities of most complicated massless two-loop integrals..
- The fully differential H to b bbar width at NNLO [arxiv:1110.2368]
- Bottom quark is dominant decay mode for light higgs and can lead to a discovery in the associated higgs production..
- Used nonlinear mappings for both double-real and real-virtual corrections
- Wrote a fully differential Monte-Carlo event generator.

Hixs \& EHixs

- IHixs: Code for Inclusive Higgs production (gg,b bbar $\rightarrow \mathrm{H}$)
- Total cross-section for Higgs boson hadroproduction with anomalous Standard Model interactions [arXiv:1107.0683]
- Includes NNLO QCD in HQET, NLO mass effects, electroweak corrections
- Off-shell effects
- BSM effects, enhanced yukawa caouplings
- Higgs production cross-section in a Standard Model with four generations at the LHC [arXiv:1103.3645]

- EHixs: Code for Exclusive Higgs Production (gg,b bbar \rightarrow H) ... in progress
- Successor of FeHip written in C
- Uses non-linear mappings for double-real corrections
- Currently have b bbar $\rightarrow \mathrm{H}$ "nearly" implemented

near future plans

$$
\begin{aligned}
& \left|M_{R R}\right|^{2}=\sum_{D_{i} \in D} \frac{\left.N_{i}\left(\epsilon,\left\{s_{k l}\right\}\right)\right)}{D_{i}} \\
& \begin{array}{l}
\text { Process dependent } \\
\text { Numerator functions }
\end{array} \\
& \begin{array}{l}
\text { Universal singularity } \\
\text { structures }
\end{array}
\end{aligned}
$$

$$
D:=\left\{s_{13} s_{23} s_{134} s_{234}, s_{13} s_{23} s_{14} s_{24}, s_{13} s_{24} s_{134} s_{234}, \ldots .,\left(s_{34} s_{134} s_{234}\right)^{2}, \ldots\right\}
$$

- Know how to factorise denomenators
- Tedious to find numerators in CDR, currently use classic Feynman Diagram methods
- Idea:
- Use Recursion relations (Berends-Giele or BCFW) to compute the numerators numerically,
- Potential Difficulties:
- Epsilon pieces
- Quadratic divergences

