aMC@NLO status III: interface to HERWIG and PYTHIA

Paolo Torrielli

EPFL

CERN, January 2012

MC@NLO in one slide

$$
\begin{array}{r}
\frac{d \sigma_{\mathrm{MC@NLO}}}{d O}=\left[d \Phi_{B}\left(B+V+\int d \Phi_{(+1)} M C\right)\right] I_{\mathrm{MC}}^{(n)}(O)+ \\
{\left[d \Phi_{B} d \Phi_{(+1)}(R-M C)\right] I_{\mathrm{MC}}^{(n+1)}(O)}
\end{array}
$$

Simplified structure of the Monte Carlo counterterm:

$$
M C=\left|\frac{\partial\left(t^{\mathrm{MC}}, z^{\mathrm{MC}}, \phi\right)}{\partial \Phi_{(+1)}}\right| \frac{1}{t^{\mathrm{MC}}} \Theta(D Z) \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{1}{2 \pi} P\left(z^{\mathrm{MC}}\right) B .
$$

- It is the cross section for the first emission in the parton shower.
- It acts as a local counterterm for the real and virtual amplitudes.
- Its process-dependence is trivial.
- It depends on the Monte Carlo one is interfacing the NLO computation to.

aMC@NLO: automation of the MC counterterm

$$
M C=\left|\frac{\partial\left(t^{\mathrm{MC}}, z^{\mathrm{MC}}, \phi\right)}{\partial \Phi_{(+1)}}\right| \frac{1}{t^{\mathrm{MC}}} \Theta(D Z) \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{1}{2 \pi} P\left(z^{\mathrm{MC}}\right) B .
$$

aMC@NLO: automation of the MC counterterm

$$
M C=\left|\frac{\partial\left(t^{\mathrm{MC}}, z^{\mathrm{MC}}, \phi\right)}{\partial \Phi_{(+1)}}\right| \frac{1}{t^{\mathrm{MC}}} \Theta(D Z) \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{1}{2 \pi} P\left(z^{\mathrm{MC}}\right) B .
$$

Kinematics + color

- Assignment of the splitting type (ISR from leg 1 or 2, FSR from massive or massless leg).
- Assignment if color flow and color partner of the splitting parton (MC scales and variables may depend on it).
Achieved in a way completely independent of the process and of the particle multiplicity.

aMC@NLO: automation of the MC counterterm

$$
M C=\left|\frac{\partial\left(t^{\mathrm{MC}}, z^{\mathrm{MC}}, \phi\right)}{\partial \Phi_{(+1)}}\right| \frac{1}{t^{\mathrm{MC}}} \Theta(D Z) \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{1}{2 \pi} P\left(z^{\mathrm{MC}}\right) B .
$$

Kinematics + color

- Assignment of the splitting type (ISR from leg 1 or 2, FSR from massive or massless leg).
- Assignment if color flow and color partner of the splitting parton (MC scales and variables may depend on it).
Achieved in a way completely independent of the process and of the particle multiplicity.

Variable definitions + boundaries

- Evolution variables $t^{\mathrm{MC}}, z^{\mathrm{MC}}$, and 'dead zones' (DZ) are MC specific.

But the structure is general and developer-friendly: to implement a new MC one just needs to write few standardized routines in a single fortran file (montecarlocounter.f).
aMC@NLO/HERWIG: status

aMC@NLO/HERWIG: status

HERWIG 6: complete

- Validated for all kinds of emission types against MC@NLO 4.0. Full agreement: not trivial since the structure of the codes is completely different.
- Moved to new more complex processes:
- $p p \rightarrow t \bar{t} H / t \bar{t} A+X$
- $p p \rightarrow b \bar{b}\left(W^{ \pm *}\right) / b \bar{b}\left(Z^{*}\right) \rightarrow b \bar{b} \|+X$
- $p \bar{p} \rightarrow j j\left(W^{+}\right) \rightarrow j j \bar{l} \nu+X$
- $p p \rightarrow 2\left(\gamma^{*} / Z^{*}\right) \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}+X$
- ...

aMC@NLO/HERWIG: status

HERWIG 6: complete

- Validated for all kinds of emission types against MC@NLO 4.0. Full agreement: not trivial since the structure of the codes is completely different.
- Moved to new more complex processes:
- $p p \rightarrow t \bar{t} H / t \bar{t} A+X$
- $p p \rightarrow b \bar{b}\left(W^{ \pm *}\right) / b \bar{b}\left(Z^{*}\right) \rightarrow b \bar{b} \|+X$
- $p \bar{p} \rightarrow j j\left(W^{+}\right) \rightarrow j j \bar{l} \nu+X$
- $p p \rightarrow 2\left(\gamma^{*} / Z^{*}\right) \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}+X$
- ...

HERWIG ++: almost complete

- All formulae implemented. Validated against MC@NLO 4.0 for ISR processes. Full agreement.
- Currently under validation against MC@NLO 4.0 and aMC@NLO/HERWIG 6 for more complicated processes.
aMC@NLO/PYTHIA: status

aMC@NLO/PYTHIA: status

PYHTIA 6 (virtuality-ordered): complete

- Validated against the few available MC@NLO/PYTHIA ISR processes. Full agreement.
- Produced new results: first time aMC@NLO/PYTHIA with FSR.
- The implementation is at the same level as aMC@NLO/HERWIG 6, so to date, the processes that can be produced with aMC@NLO/HERWIG 6 can be as well produced with aMC@NLO/PYTHIA 6. There is just less expertise.

aMC@NLO/PYTHIA: status

PYHTIA 6 (virtuality-ordered): complete

- Validated against the few available MC@NLO/PYTHIA ISR processes. Full agreement.
- Produced new results: first time aMC@NLO/PYTHIA with FSR.
- The implementation is at the same level as aMC@NLO/HERWIG 6, so to date, the processes that can be produced with aMC@NLO/HERWIG 6 can be as well produced with aMC@NLO/PYTHIA 6. There is just less expertise.

PYTHIA 8 (and PYTHIA $6 p_{T}$-ordered in parallel): incomplete

- Formulae implemented just for ISR, and currently under validation against the few available MC@NLO/PYTHIA ISR processes.
- Just started to undertake the FSR implementation.

Plans and priorities

- aMC@NLO/HERWIG 6: nothing to be implemented.
- aMC@NLO/HERWIG + + : complete the validation (few weeks of work, middle priority).
- aMC@NLO/PYTHIA 6: nothing to be implemented (but very exciting to see how phenomenology differs from HERWIG 6).
- aMC@NLO/PYTHIA 8 (and PYTHIA $6 p_{T}$): complete the implementation of FSR formulae and perform the whole validation (few months of work, high priority).
http://amcatnlo.cern.ch

