
BSM with FEYNRULES Towards NLO: status and plans

Benjamin Fuks (IPHC Strasbourg / Université de Strasbourg)

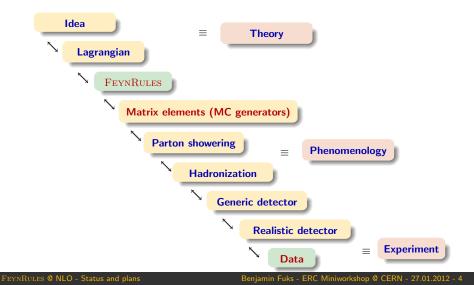
In collaboration with N.D. Christensen and C. Duhr.

ERC Miniworkshop @ CERN January 27, 2012

FEYNRULES at NLO - Status and plans.

Implementation of BSM theories in Monte Carlo tools.

- A model consists in:
 - Particles,
 - * Parameters,
 - * Interactions (\equiv Feynman rules).
- The Feynman rules have to be derived (from a Lagrangian).
 - ► Translated in a programming language. ⇒ Tedious, time-consuming, error prone.
 - Iterations for each model.
 - Iterations for each MC tool.
 - Beware: Lorentz and color structures.
 - Beware: validation.


Redundancies of the work.

Towards NL(

Summary O

A framework for LHC analyzes.

[Christensen, de Aquino, Degrande, Duhr, BenjF, Herquet, Maltoni, Schumann (EPJC '11)]

FEYNRULES in a nutshell.

[Christensen, Duhr (CPC '09); Christensen, Duhr, BenjF (in prep)]

- $\bullet~$ A framework for LHC analyzes based on ${\rm FeynRules}$ to:
 - * Develop new models.
 - * Implement (and validate) new models in Monte Carlo tools.
 - * Facilitate phenomenological investigations of the models.
 - * Test the models against data.

Main features

- * FEYNRULES is a MATHEMATICA package.
- * FEYNRULES derives Feynman rules from a Lagrangian.
- * Requirements: locality, Lorentz and gauge invariance.
- * Supported fields: scalar, fermion, vector, tensor, ghost, superfield.
- * Interfaces: export the Feynman rules to Monte Carlo generators. CALCHEP, FEYNARTS, MADGRAPH, SHERPA, WHIZARD
- * Universal FeynRules output: MADGRAPH5 and GOSAM.

$\rm FeynRules-1.6$ - status.

- Current public version: 1.6.0.
 - * To be download on http://feynrules.irmp.ucl.ac.be/.
 - * Contains the superspace module. [Duhr, BenjF (CPC '11)]
 - * Contains the UFO interface ⇒ MADGRAPH5, GOSAM. [Degrande, Duhr, BenjF, Grellscheid, Mattelaer, Reiter (2011)]
 - * Supports color sextets.
 - Contains the new FEYNARTS interface.
 ⇒ Generic Lorenz structures allowed.
 - * Interfaced to WHIZARD. [Christensen, Duhr, BenjF, Reuter, Speckner (2010)]
 - * Other interfaces: CALCHEP/COMPHEP, MADGRAPH4, SHERPA.
 - * Manual currently being updated [Christensen, Duhr, BenjF (in prep)].
- Current online model database.
 - * http://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage/ .
 - * Standard Model and simple extensions (10).
 - * Supersymmetric models (4).
 - * Extra-dimensional models (4).
 - * Strongly coupled and effective field theories (4).

Outline.

2 FEYNRULES at NLO - Status and plans.

Towards NLO ●oo	

NLO calculations with MADGRAPH - AMC@NLO.

- Real emission.
 - * Must include the appropriate subtraction terms. \Rightarrow MADFKS [Frederix, Frixione, Maltoni, Stelzer (JHEP '09)].
 - * The tree-level Feynman rules are the only required components.

ⓒ No particular problem for BSM \Rightarrow problem solved. ⓒ (Use of FEYNRULES, its interfaces to MC tools)

• One-loop virtual amplitudes.

- * Several algorithms have been proposed in the last few years. \Rightarrow MADLOOP [Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau (JHEP '11)]. \Rightarrow based on OPP reduction [Ossola, Papadopolous, Pittau (NPB '07)].
- * Requirements:
 - ◊ Tree-level Feynman rules.
 - ◊ UV renormalization counterterms.
 - ♦ **Rational** *R*₂ **terms**.

 ${igodot}$ The two latter must be included by hand. ${igodot}$

	Towards NLO ○●○	
NLO calculations in t	the context of FEYNI	Rules.
		JLES- level. O
 Automated extra Modification of 	FeynRules X.	gian ✔. e counterterms ✔.

• The UFO at NLO: basically there [UFO people + Hirschi]

Towards NLO oo●	

Automatic renormalization with FEYNRULES.

- Expansion of the renormalization constants (works with full Lagrangians).
 - * The type of the interactions in the loops can be specified.
 - * The loop-level can be specified.

ExtractCounterterms [1[s,f],{aS,1}] $\blacktriangleright l_{sf} \rightarrow l_{sf} + \frac{\alpha_s}{4\pi} \left[(\delta Z_{ll}^{L(1)})_{ff'} (P_L)_{ss'} + (\delta Z_{ll}^{R(1)})_{ff'} (P_R)_{ss'} \right] l_{s'f'}$ ExtractCounterterms [ydo, {{aS,2}, {aEW,1}}] $\blacktriangleright y_d \rightarrow y_d + \frac{\alpha_s}{2\pi} \delta y_d^{(1,0)} + \frac{\alpha}{2\pi} \delta y_d^{(0,1)} + \frac{\alpha_s^2}{4\pi^2} \delta y_d^{(2,0)} + \frac{\alpha_s \alpha}{4\pi^2} \delta y_d^{(1,1)} + \frac{\alpha_s^2 \alpha}{8\pi^3} \delta y_d^{(2,1)}$

- Treatment of the internal parameters.
 - * Automatic computation of the relations among renormalization constants.
 - * Only the ren. cnsts of the external parameters will have to be computed.

$$g_s$$
 and α_s at first order in QCD.
 $g_s = 2\sqrt{\pi\alpha_s} \implies \delta g_s^{(1)} = \frac{\sqrt{\alpha_s}}{2\sqrt{\pi}} \delta \alpha_s^{(1)}$

Outline.

FEYNRULES at NLO - Status and plans.

Conclusions.

- FEYNRULES provides a platform to:
 - * Develop new models.
 - * Investigate their phenomenology.
- FEYNRULES and leading order tools.
 - * Many interfaces exist.
 - * Any model (renormalizable or not) can be exported to at least one MC.
 - * MC event generation at LO: the problem is solved (up to spin-3/2 fields).
- NLO challenges.
 - * Achievement of the UFO @ NLO format. ►Easter '12.
 - * Automatic renormalization. ►Summer '12.
 - * Automatic R₂ terms.▶ Summer '12 ?
- Full merging to the NLO tools.