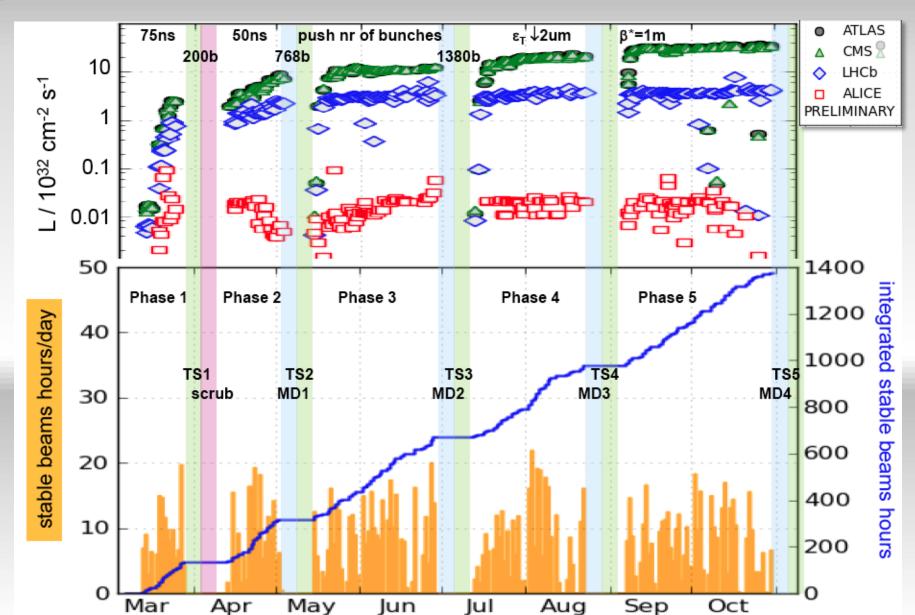
Session 1: Lessons from 2011

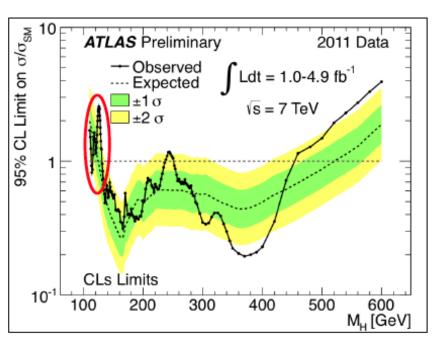
Chairman: M. Lamont

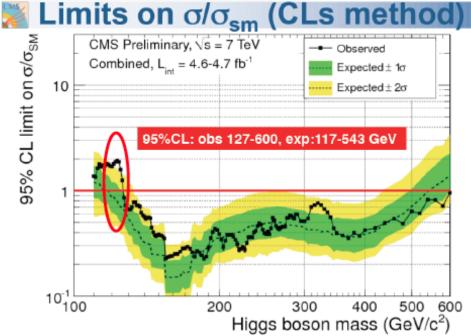

Scientific Secretary: C. Bracco

Talks and Speakers

- Review of 2011 LHC run from the experiments (M. Ferro-Luzzi)
- Input from Evian (M. Lamont)
- 2011 availability analysis (A. Macpherson)
- Injection and lessons for 2012 (C. Bracco)
- Machine Protection (M. Zerlauth)
- Vacuum performance and lessons for 2012 (V. Baglin)
- Emittance preservation (V. Kain)

2011 – good year

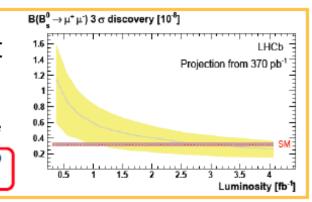




Exciting stuff

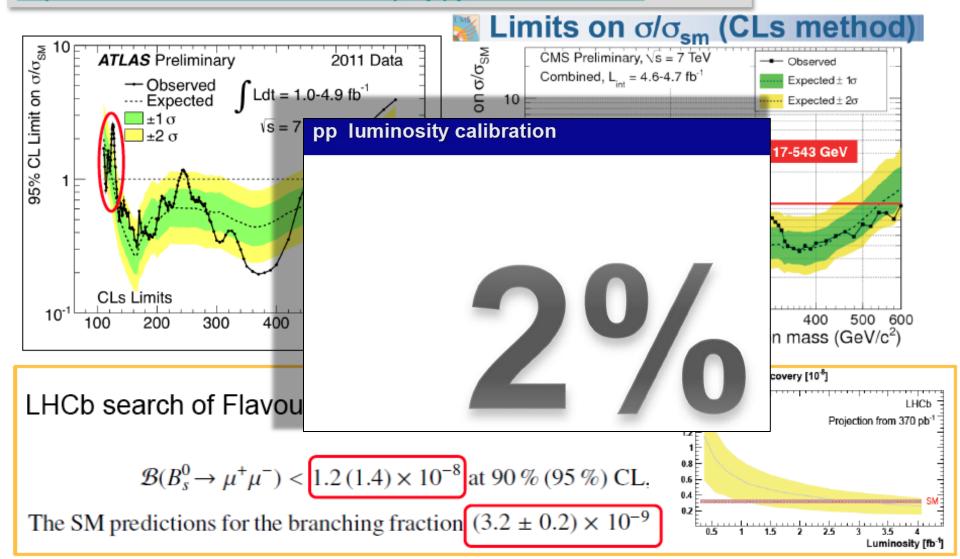
see F. Gianotti & G. Tonelli, CERN public seminar Tue 13 dec 2011

http://indico.cern.ch/conferenceDisplay.py?confld=164890



LHCb search of Flavour Changing Neutral Currents:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 1.2 (1.4) \times 10^{-8}$$
 at 90 % (95 %) CL,


The SM predictions for the branching fraction $(3.2 \pm 0.2) \times 10^{-9}$

Exciting stuff

see F. Gianotti & G. Tonelli, CERN public seminar Tue 13 dec 2011 http://indico.cern.ch/conferenceDisplay.py?confld=164890

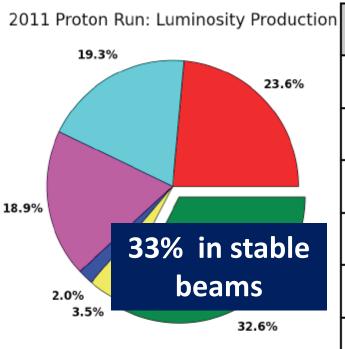
M.Ferro-Luzzi Big hand to the man

M.Lamont

2011

- Remarkable year: no real show stoppers
- Operational robustness: reproducibility, stability, lifetime, good control of optics, excellent performance of Machine Protection system (MPs), tools, sequences, procedures and SW
- Successfully took on:
 - Total intensity & 110 MJ
 - Intensity ramp up safely executed in 2011 (11 weeks many issues)
 - should be faster in 2012 (~3 weeks)
 - Bunch spacing 50 ns good choice after scrubbing
 - Bunch intensity
 - Emittance

- Excellent beam from injectors
- Beta* & aperture (better than estimates)


M. Lamont System performance

- Cryogenics
- QPS
- Injection and dump systems
- Transverse feedback
- Collimation
- Orbit and tune feedback
- Beam instrumentation
- Vacuum

Availability/issues examined

- Good to excellent performance all around
- All systems made "discoveries" related to high intensities and luminosity (impendence, beam heating, e-cloud and vacuum instabilities, R2E and UFOs rate)
- Mitigation measures and other improvements should improve availability and performance in 2012

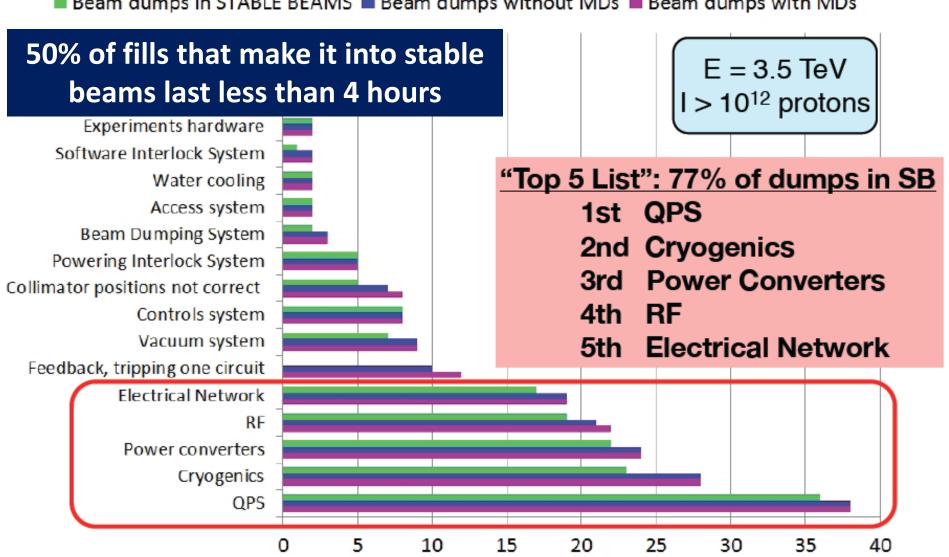
LHC Availability and Performance in 2011

	Days	NB %	SET UP %	INJ %	RAMP %	FT+SQ +AD %	SB %
2011	299.3	25.7	30.5	17.4	1.7	4.3	20.5
2011-TS	277.9	23.3	29.5	18.7	1.9	4.7	22.0
р-р	156.6	22.0	20.4	19.2	2.2	3.8	33.8
p-p LP	81.4	23.6	19.3	18.9	2.0	3.5	32.6
Pb-Pb	24.1	25.0	20.8	13.6	2.2	5.5	32.9
MD	33.2	22.9	32.3	36.8	1.2	6.0	0.8

Availability issues clearly identified – systems targeted improvements through 2011 and Christmas technical stop

1.1

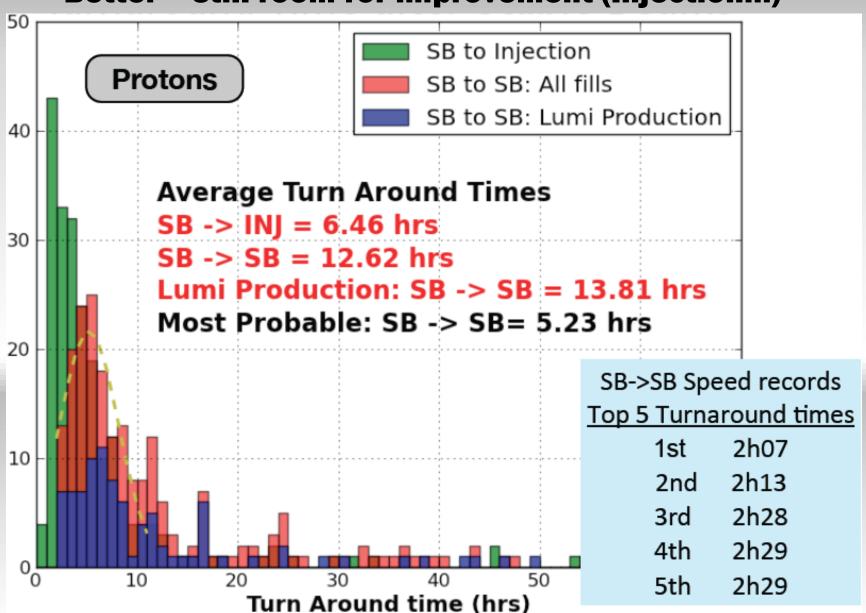
Hubner factor: $H = 11.57 \times L_{Del} / (D \times L_{Peak})$ **H_Expected = 0.2**


p-p (LP): 81.4 days $L_{Peak} = 2572 \text{ (µb.s)}^{-1} L_{Del} = 4.01 \text{ fb}^{-1} => H = 0.22$

Pb-Pb: 24.1 days $L_{Peak} = 512$ (b.s)⁻¹ $L_{Del} = 167.6 \,\mu\text{b}^{-1} > H = 0.24$

l٤

A.Macpherson Premature dump in Stable beams


■ Beam dumps in STABLE BEAMS ■ Beam dumps without MDs ■ Beam dumps with MDs

A.Macpherson

Turnaround

Better – still room for improvement (Injection...)

Injection and Lessons for 2012

- Injection of 144 bunches fully operational
- Successful injection of 288 bunches (during MD) for both beams → still
 need to optimise beam in injectors and accumulation in LHC
- **TL steering was complicated** (shot-by-shot, bunch-by-bunch variations and long term drifts)

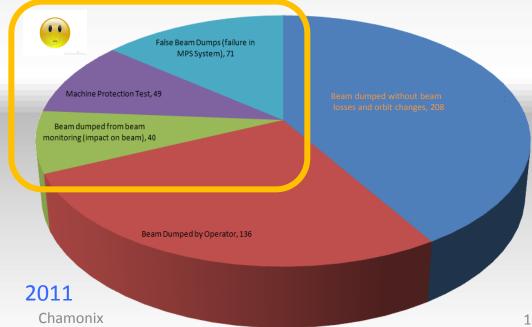
 \rightarrow In 2011: ~ 30 min – 2 h to steer (excluding some big outliers) every 2-3 days Estimate 2012 if stability is not improved:

1h steering \times 0.5/days \times 120 days = <u>60h</u>!

This can be improved (reduce sources of instabilities, improved references)

- Injection failures machine protected:
 - MKI-IR8 Flashover (bad vacuum) → 11 magnets quenched
 - MKI-IR2 Erratics → 3 magnets quenched, permanent effects on
 ALICE Silicon Drift Detector
- Follow-up: hardware and diagnostics improvements, HW and SW more severe interlocks (vacuum and temperature), instructions for safer operation deployed!

M.Zerlauth

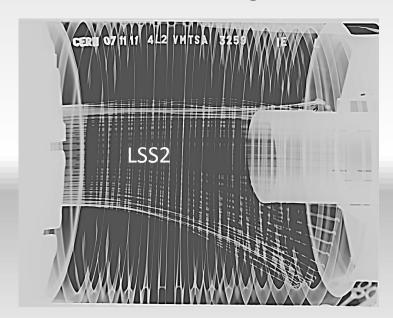

Machine Protection

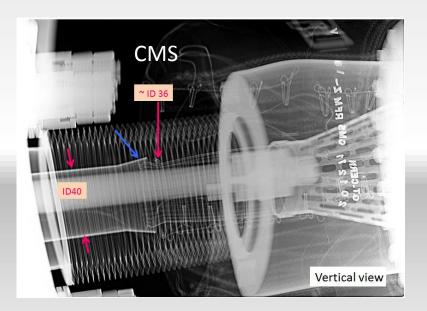
- 10.000 interlock conditions, continuously evolving architecture (operation, MD, special runs..)
- About 1200 clean beam dumps in 2011 (-10% wrt to 2010)
- No beam induced quench with circulating beams (>100MJ!!)
- No equipment damage observed (except ALICE SDD)

MPS response of all dumps from 3.5TeV meticulously analyzed

and validated

 Complexity and high level of safety in MPS -> False positive (QPS + R2E), related to increasing beam intensities


MPS Improvements

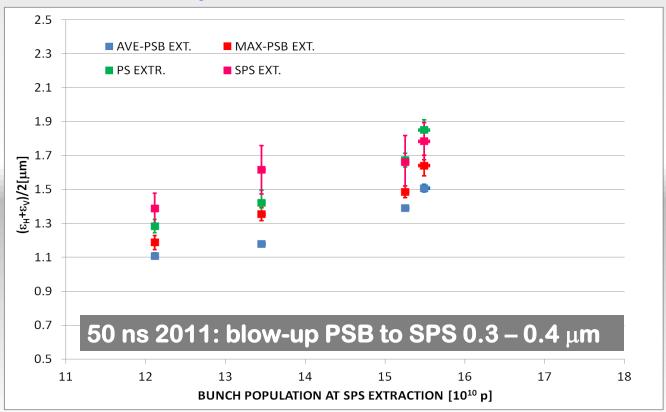

- Additional active protection will provide further essential redundancy for next years of running:
 - Beam Current Change Monitors (DIDT)
 - PC interlock to protect against operations and feedback failures
 - ADT: Selective bunch blow-up + abort gap cleaning (new procedure)
 - Procedure for 'non-working dump trigger'
- Maintaining present good level of orbit stability is a primary importance when moving to $<\beta^*$ + tight collimator settings (2012 goal)
- Remain vigilant in order to maintain current level of safety of MPS systems while increasing efforts on increasing MPS availability

Vacuum

- Dynamic effects: synchrotron radiation, e-cloud → Scrubbing → reduction
 of the LHC pressure
- Unexpected pressure rise (10⁻⁶ mbar) observed in LSS2-LSS8 (D1) and close to CMS: bad RF contact (x-rays inspection) → interventions done in 2 & 8 & CMS to resolve RF finger issues shouldn't be a problem in 2012.

Vacuum

- Dynamic effects: synchrotron radiation, e-cloud → Scrubbing → reduction
 of the LHC pressure
- Unexpected pressure rise (10⁻⁶ mbar) observed in LSS2-LSS8 (D1) and close to CMS: bad RF contact (x-rays inspection) → interventions done in 2 & 8 & CMS to resolve RF finger issues shouldn't be a problem in 2012.
- Recommendations and perspectives:
 - Previously scrubbed and air exposed surface scrubs 10 x faster than as received surface
 - 50 ns operation:
 - Start up to 1.45 10¹¹ ppb possible while scrubbing in the shadow of intensity ramp-up
 - Start up to 1.6 10¹¹ ppb will require a couple of days of scrubbing
 - 25 ns operation:
 - Requires a dedicated scrubbing run with 25 ns


Emittance Preservation

$$L = \frac{kN^2 f \gamma}{4\pi \beta^* \varepsilon} \cdot F$$

Small ε to maximize luminositiy

Produce small ϵ in injectors \rightarrow need to keep ϵ small in the LHC

Impressive performance of injectors!!

Emittance Preservation in the LHC

 Different measurement methods: wire scanner, BSRT, luminosity

Main observations:

- Injection: emittance conserved within measurements
- 450 GeV plateau: Emittances growth ~ 10 % in 20 minutes (reasonably consistent with IBS but slightly faster)
- Ramp: ~20% Blow-up for all planes (effect of reduced damper gain?)
- 3.5 TeV: Blow-up >20% during squeeze only for beam 1 horizontal between β^* 5 m and 1.5 m. No obvious source.
- Same behavior for ions run
- Many measurement improvements are foreseen for 2012 (instrumentation, methods and analysis)

Conclusions

Exciting year with excellent performance of injectors, machine and experiments!

- Good performance of all the systems
- Improved and robust knowledge of high intensities and luminosity effects on the different systems
- All the experiments provided with luminosity higher than expectations!
- Mitigation measures and other improvements have been implemented and should improve availability and performance in 2012
- Potential performance gain of ~20% if emittance growth can be understood and reduced in ramp/squeeze