# **Future neutrino Facilities:** the Neutrino Factory

Gersende Prior University of Geneva & CERN EN-MEF

On behalf of the EUROnu and IDS-NF collaborations





#### ATS Seminar

IT Auditorium 31/3-004

19 January 2012

### Outline

The neutrino puzzle:
 today's picture
 tomorrow's challenges

Proposed future neutrino facilities:
 super-beams
 beta-beams
 neutrino factory

The neutrino factory design study:
 baseline, challenges and supporting R&D
 next steps toward completion of the study

"NEUTRINOS, they are very small. They have no charge and have no mass and do not interact at all..." *Cosmic Gall by John Updike (1960)*.

- In the Standard Model:
  - \* neutrinos belong to the lepton family and come in three flavours  $v_e$ ,  $v_{\mu}$  and  $v_{\tau}$
  - have no charge, no mass and interact only via the weak interactions

**Today's picture** 

#### Experimental results:

30+ years of solar, atmospheric, accelerator-based and reactor-based neutrino experiments have demonstrated that neutrinos can change flavour and have a mass.









Weak eigenstates versus mass eigenstates (PMNS matrix):

Today's pictu

$$\begin{bmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{bmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha 1/2} & 0 & 0 \\ 0 & e^{i\alpha 2/2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

with 
$$c_{ij} = \cos\theta_{ij}$$
 and  $s_{ij} = \sin\theta_{ij}$ 

Oscillation probability (vacuum):

3 mixing angles θij
1 CP violation phase δ
2 Majorana phases α<sub>1</sub> and α<sub>2</sub>

 $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4\Sigma Re[W_{\alpha\beta}^{\ ij}]\sin^2(\Delta m_{\ ij}^2L/4E) + 2\Sigma Im[W_{\alpha\beta}^{\ ij}]\sin^2(\Delta m_{\ ij}^2L/2E)$ 

with  $\Delta m_{ij}^2 = m_i^2 - m_j^2$  and  $W_{\alpha\beta}^{ij} = U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*$ 

2 squared mass differences  $\Delta m^2_{ij}$ 

Today's picture (3/3)

#### What has been measured:

P. Adamson *et al.* (MINOS Coll.) Phys. Rev. Lett. 106, 181801 (2011)



A. Gando *et al.* (KamLAND Coll.) Phys. Rev. D 83, 052002 (2011)



 $|\Delta m^2|$  mixture of  $|\Delta m^2_{31}|$  and  $|\Delta m^2_{32}|$ and sin<sup>2</sup>(2 $\theta$ ) mixture of  $\theta_{13}$  and  $\theta_{23}$ .

Solar/Reactor data fit depends on  $\theta_{13}$ .

Mixing angles:  $\theta_{12} \sim 34^{\circ}(\text{solar})$  and  $\theta_{23} \sim 46^{\circ}$  (atmospheric). Mass difference  $\Delta m_{12}^2 \sim 8 \times 10^{-5} \text{ eV}^2$  (reactor) and  $|\Delta m_{23}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2$  (accelerator). We still don't know:

- \* the value of the mixing angle  $\theta_{13}$   $\leftarrow$  Future v facilities
- \* the sign of the squared mass difference  $\Delta m_{23}^2 \leftarrow \beta \beta \rho v \exp$ . / Future ν facilities

<u>Fomorrow's challenges (1/1)</u>

- \* if v and  $\overline{v}$  are the same particle (Majorana)  $\leftarrow \beta\beta ov \exp$ .
- 🔹 the absolute neutrino mass 🥌 ββον exp.



T. Schwetz et al., New J. Phys. 13, 063004 (2011)

#### Proposed facilities: super-beams (1/3)

Upgrade of a conventional neutrino beam:

- \* ~98%  $v_{\mu}$  (or  $\overline{v}_{\mu}$ ) produced by the decay of an intense pion beam
- ♦ search for  $\nu_{\mu} \rightarrow \nu_{e}$  oscillations.
- high intensity (proton driver > 1 MW) and low-energy ( $E_v < 5$  GeV).
- On-axis ( $E_v \propto p_{\pi}$ ):
  - CERN SPL to Frejus 4 MW 4.5 GeV protons 130 km  $E_v \sim 0.3$  GeV.

EUROv WP<sub>2</sub>

 $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$  $\pi^{-} \rightarrow \mu^{-} + \overline{\nu}_{\mu}$ 

- ✤ LBNE 2.3 MW 60-120 GeV protons 1300 km E<sub>v</sub> ~ 0.5 -5 GeV.
- Off-axis ( $E_v$  same at a given angle but v flux smaller):
  - T2K upgrade ~1.7 MW 295 km (T2HK)  $E_v = 0.6$  GeV at 2.5° off-axis.



#### Proposed facilities: beta-beams (2/3

SPL/RC

ISOL

target

ECR

RFQ

Linac

RCS

EUROv WP4

• Uses the decay of a stored beam of beta-unstable ions:

- \* pure  $v_e$  (or  $v_e$ ) beam
- ♦ search for  $v_e \rightarrow v_\mu$  oscillations.



Low-Q (baseline) concept:

<sup>★</sup> <sup>6</sup>He → <sup>6</sup>Li + e<sup>-</sup> + 
$$\overline{\nu}_e$$
 (Q<sub>β</sub> = 3.50 MeV)  
<sup>★</sup> <sup>18</sup>Ne → <sup>18</sup>F + e<sup>+</sup> +  $\nu_e$  (Q<sub>β</sub> = 3.42 MeV)

- CERN to Frejus ~ 130 km.
- High-Q (alternative) concept:

<sup>★</sup> <sup>8</sup>Li → 2 <sup>4</sup>He + e<sup>-</sup> + 
$$\overline{\nu}_e$$
 (Q<sub>β</sub> = 12.96 MeV)  
<sup>★</sup> <sup>8</sup>B → 2 <sup>4</sup>He + e<sup>+</sup> +  $\nu_e$  (Q<sub>β</sub> = 13.92 MeV)

CERN to Gran-Sasso or CERN to Canfranc ~700 km.



Uses the decay of a stored muon beam:

★ 50%  $v_{\mu}(\bar{v}_{\mu})$  - 50%  $\bar{v}_{e}(v_{e})$  beam from  $\mu^{\pm} \rightarrow e^{\pm} + v_{e}(\bar{v}_{e}) + \bar{v}_{\mu}(v_{\mu})$ 

- \* search for  $v_e \rightarrow v_u$  oscillations
- \* exploit other channels  $\nu_{\mu} \rightarrow \nu_{x}$  and  $\nu_{e} \rightarrow \nu_{x}$ ,  $x = e, \mu, \tau$
- \* 4 MW  $10^{21}$  v/year  $E_v > 20$  GeV
- 2500-5000 km and 7000-8000 km baselines
- Accelerator systems:
  - proton driver and annexes
  - target system
  - front-end system (buncher, rotator, cooler)
  - muon acceleration •••
  - decay rings

An essential milestone for a muon collider.







EUROv WP3

THE INTERNATIONAL DESIGN STUDY

FOR THE NEUTRIND FACTORY

#### Proposed facilities: neutrino factory (3/3)

Proton driver and annexes: CERN scenario (1/3)

CERN SPL-based proton driver:

- ♦ H<sup>-</sup> linac
- bunch frequency 352.2 MHz
- repetition rate 50 Hz
- high-speed chopper < 2 ns (including rise and fall time)</p>

#### Option 1:

- 2.25 MW (2.5 GeV) or 4.5 MW (5 GeV)
- 1.1x10<sup>14</sup> protons/pulse
- average pulse current 20 mA
- pulse duration 0.9 ms

#### Option 2:

- ✤ 5 MW (2.5 GeV) and 4 MW (5 GeV)
- 2x10<sup>14</sup> protons/pulse (2.5 GeV) and 1x10<sup>14</sup> proton/pulse (5 GeV)
- average pulse current 40 mA
- pulse duration 1 ms (2.5 GeV) and 0.4 ms (5 GeV)

#### Status:

- beam instabilities in the accumulator investigated for 3 bunches
- accumulator and compressor rings MADX lattices available
- accumulator and compressor rings elements listed for the costing



#### Proton driver and annexes: Fermilab scenario (2/3)

Fermilab Project X-upgrade-based proton driver, 4 MW at 8 GeV:

- increase the CW linac average current to 5 mA
- need to increase pulsed linac duty factor to ~10% (Project X is ~5%)
- need to increase number of particles per linac bunch
- add an accumulator and a compressor ring
- Accumulator :
  - ~250 m circumference
  - 14 bunches ~100 ns long
  - 1.3 x 10<sup>13</sup> protons/bunch
  - stripping with foil or laser
- Compressor:
  - at entrance ~ 50 ns bunches
  - debunch in ~ few ns bunches
- Challenges and task:
  - stripping foil survival or laser technique demonstration
  - instabilities/space charge studies
  - beam size and angle at target optimization



#### Proton driver and annexes: RAL scenario (3/3)

• Upgrade of the RAL neutron spallation source ISIS, 2-5 MW at few GeV:

- could be shared between a short pulse-spallation neutron source and the neutrino factory
- requires an additional RCS or FFAG booster (to bring the proton beam to the necessary energy and perform appropriate bunch compression)

#### Status:

- Iattice and high-intensity studies for a ~3.3 GeV booster synchrotron and beam lines
- 800 MeV high-intensity linac design
- RCS and FFAG lattice studies for a main ring accelerator

#### R&D needs:

high-power front-end(FETS)

- RF systems
- stripping foils
- diagnostics
- kickers



Hg-jet target scheme:

pions capture in 20 T solenoid field followed by an adiabatic taper to 1.5 T

Target system: baseli

- Previous design (Interim Design Report March 2011):
  - simulations (MARS15 & FLUKA) results showing high levels of energy deposition in the magnets (~2.4 MW need to be dissipated in the shielding)
  - both the Hg-jet and proton beam disrupt the Hg pool (need splash mitigation)

#### Redesign:

 better shielding of the SC magnets from radiation

- splash mitigation options under study
- mechanical support being improved

#### ✤ R&D:

MERIT (2007) validated 4 MW proton beam operation in Hg



24 (14) GeV beam with different PS spill

mercury pool proton dump

beam window

tungsten-carbide beads + water

Superconducting magnets

2011 Target System Concept

tungsten-carbide (WC) beads + water

proton beam and mercury jet

#### Tasks:

 define target station infrastructure, including outer shielding, remote handling, Hg cooling loop, beam windows and beam dump Target system: alternatives (2/2

Target systems under consideration as a mitigation option:

- a metal-powder jet
- a system of solid tungsten bars that are exchanged between pulses
- Metal-powder jet:
  - test rig at RAL with 100 kg W powder (grain size)
  - < 250 µm) ~20 min continuous operation
  - coherent free flow jet P ~ 2 bars
  - validation of results with simulations
- Solid target:
  - shock study using high-currents in thin W (Ta) wires
  - results in agreement with LS-DYNA simulations
  - preliminary target change system engineering underway
- Future R&D:
  - flow improvement with mitigation of flux breakdown or phase separation for the powder target
  - irradiation study for tungsten powder and tungsten pebble bed at the CERN HiRadMat facility



**Buncher**:

slices the beam in a muons train of alternated signs

Front-end: purpose

 $\epsilon_{I} = 150 \text{ m}$ 

- 🔹 320-234 MHz RF
- 3.4 9.7 MV/m gradient
- o° phase
- Rotator:
  - reduces the particle energy inside the bunch train
  - 🔹 230-202 MHz RF
  - 13 MV/m gradient
  - ✤ 5° phase

#### Cooler:

 $\diamond$  use absorbers (reduces  $p_{\mu}$ ) alternated with RF cavities (restores p<sub>u</sub><sup>L</sup>)

- 201 MHz RF
- ✤ 15 MV/m gradient
- 1 cm LiH absorbers windows
- ✤ 35° phase





• Revised (IDR) lattice optimization - need to get rid early of the unwanted particles:

Front-end: status (

- proton absorber for low-momentum protons
- chicane for high-momentum particles.
- transverse collimation.
- Started to take the reference lattice parameters for:
  - engineering study
  - costing exercise
- Remaining tasks:
  - determine realistic operational RF gradient limits (R&D @MTA)
  - assess and mitigate energy deposition from particle losses
  - optimize lattice matching sections
  - develop engineering design for magnets, RF and absorbers

MICE: PoP of muon ionization cooling, hoping for results to come before 2014.



Front-end: alternatives (3/3)

The RF cavities sit in high gradient (9-16 MV/m) high (~ 3T) magnetic field increasing the risk of breakdown as suggested by experiments performed at the Fermilab Muon Test Area (MTA).

Beam

- Bucked coil lattice:
  - reduced magnetic field in the RF
  - 2 x 1.80 (or 2.10) m long cooling cell

 G4MICE results comparable to the International Scoping Study (ISS-2006)

- Magnetically insulated lattice:
  - $E \perp B$  field in the cavity
  - similar performance to the ISS study
  - tolerance to coil misalignment < 2 mm</p>
  - multipactoring and power-consumption issues
- High-pressure (HPRF) lattice:
  - cavity filled with high-pressure H<sub>2</sub> gas
  - use LiH absorbers for muon cooling
  - study of windows material, thickness and pressure
  - test with a gas-filled cavity done at the MTA



#### Acceleration system: Linac and RLAs (1/2



#### Linac:

- short (3 m, 3.8 MV/m), medium (5 m, 5.1 MV/m) and long (8 m, 6.4 Mv/m) cells made of SC RF and solenoids
- focusing with solenoids (better for low-energy, large emittance beams)
- increase acceleration rate by moving toward crest

#### RLA:

- dogbone shape provide greater separation at switchyard (over racetrack)
- made of SC RF and quadrupoles
- inject into linac center
- 4.5 passes per linac

#### Tasks:

- validation of the switchyard design
- complete lattice design (matching sections, injection, overall layout)
- track through all subsystems with realistic errors
- complete the engineering design for all the components (magnets, RF...)

Acceleration system: FFAG (2/2

Linear non-scaling FFAG:

- single arc with large energy acceptance
- consists entirely of identical FDF triplets
- almost all drifts contain SC cavities or injection/extraction hardware

#### Injection/Extraction:

- kickers shared for both muons signs
- inject from inside/extract to outside
- slightly bigger magnet apertures in injection/extraction regions

#### Tasks:

- finalize the chromatic correction scheme
- determine optimal longitudinal phase space matching
- design matching to upstream and downstream systems
- complete 6D tracking with errors
- design main components (magnets, RF, injection/extraction)
- make cost comparison with equivalent RLA solution.



Design criteria:

- 2 racetrack shaped rings
- 3 x train of ~50 bunches, 25 GeV
  muons decay in straight which is a large fraction of the circumference
- store both muon signs simultaneously
   beam divergence from the lattice at most 0.1/γ
- 1609 m circumference, 599 m straights
  tilt angles of 36° (7500 km detector) and 18° (4000 km detector)
- depths of 440 m and 240 m respectively
- $\Rightarrow$  β is 150 m in the straights and 13 m in the arcs.
- Beam diagnostic:
  - polarimeter to measure decay electrons (beam energy and energy spread)
  - \* in-beam devices for divergence measurements (Cherenkov with He gas or Optical Transition Radiation)
  - \* challenging to get to the desired precision (natural  $1/\gamma$  is 4 mrad)
- Tasks:

  - design the injection system
     assess needs for chromatic corrections and beam abort scheme
  - design study of diagnostics and specifications
  - consider whether beam abort is necessary
  - design means to measure neutrino flux spectrum at far detectors.



Next step toward completion of the study (1/

March 2011 publication of the Interim Design Report (IDR) documenting in details the neutrino factory design study.



# International Design Study for the Neutrino Factory

IDS-NF-020

#### Interim Design Report

The IDS-NF collaboration

March 26, 2011

#### 134 authors, 47 institutes:

| Bulgaria               | University of Sofia                                               |
|------------------------|-------------------------------------------------------------------|
| France                 | IPHC Strasbourg                                                   |
| Germany                | MPI Heidelberg, MPI Munich,                                       |
|                        | Fakultät für Physik und Astronomie Würzburg                       |
| India                  | HCRI Allahabad, SINP Kolkata, TIFR Mumbai                         |
| Italy                  | Milano Bicocca, Universita di Napoli Federico II,                 |
|                        | Universita di Padova and INFN Padova,                             |
|                        | Sezione INFN Roma Tre                                             |
| Japan                  | Kyoto University RRI, University of Osaka,                        |
|                        | Tokyo Metropolitan University                                     |
| Spain                  | UAM and IFT Madrid, UV/CSIC and IFIC Valencia                     |
| $\mathbf{Russia}$      | INRR Moscow                                                       |
| $\mathbf{Switzerland}$ | CERN, University of Geneva                                        |
| $\mathbf{U}\mathbf{K}$ | Brunel University, Daresbury Laboratory, Glasgow University,      |
|                        | Imperial College London, IPPP Durham, Oxford University,          |
|                        | Rutherford Appleton Laboratory, Sheffield University,             |
|                        | Warwick University                                                |
| $\mathbf{USA}$         | Brookhaven National Laboratory, Fermi National Laboratory,        |
|                        | Jefferson Laboratory, Laurence Berkeley National Laboratory,      |
|                        | University of Mississippi, Michigan State University, Muons Inc., |
|                        | Northwestern University, Oak Ridge National Laboratory,           |
|                        | Princeton University, University of California at Riverside,      |
|                        | Stony Brook University, University of South Carolina,             |
|                        | Virginia Polytechnique Institute, University of California        |
|                        | at Los Angeles                                                    |

https://www.ids-nf.org/wiki/FrontPage/Documentation/IDR

Next step toward completion of the study (2/

Review of the neutrino factory design study:

the European Committee for Future Accelerators (ECFA) Review Panel was mandated to review the EUROnu Mid-term Report and the IDS-NF Interim Design Report (IDR)

Review meeting at STFC, Darebury, May 5-6, 2011.

- review was presented at the ECFA-EPS joint session (Grenoble, 23 July 2011)
- review report ECFA/11/273 published in November 2011
- report summary given to the CERN council in December 2011
- Toward the Reference Design Report (RDR):
  - develop a complete and technically feasible design having the required performance
  - carry out the end to end tracking of the entire facility to validate performance estimate
  - perform a cost estimate for the whole facility



# THANKS !!!

# For your attention

### &

To my EUROnu & IDS-NF colleagues for the help providing material. BACKUP SLIDES

# **IDS-NF and EUROnu structures:**



# Neutrino factory physics potential:

#### Channel multiplicity:

| Stored $\mu^- \rightarrow e^- v_\mu \overline{v}_e$ |                                                                     |  |
|-----------------------------------------------------|---------------------------------------------------------------------|--|
| Disappearance                                       | Appearance                                                          |  |
| $\bar{v}_e \rightarrow \bar{v}_e \rightarrow e^+$   | $\overline{\nu}_e \rightarrow \overline{\nu}_\mu \rightarrow \mu^+$ |  |
|                                                     | $\bar{v}_e \rightarrow \bar{v}_\tau \rightarrow \tau^+$             |  |
| $v_{\mu} \rightarrow v_{\mu} \rightarrow \mu^{-}$   | $v_{\mu} \rightarrow v_e \rightarrow e^-$                           |  |
|                                                     | $v_{\mu} \rightarrow v_{\tau} \rightarrow \tau^{-}$                 |  |



Discovery potential at  $3\sigma$  for CP violation (left), mass hierarchy (middle) and sin<sup>2</sup> $\theta_{13}$ (right).