Search for SM Higgs boson in $H \rightarrow ZZ \rightarrow 2I2v$ decay channel at CMS

Arun Kumar

University of Delhi, India

On behalf of the CMS Collaboration

Physics In Collision Slovakia, 12th - 15th Sept. 2012

Outline

- Introduction and Motivation
- Analysis Strategy
- Background Estimation
- Systematics and Limits

Introduction and Motivation

Motivation

Although SM Higgs excluded in the sensitive range of this analysis at 95% CL but still crucial to understand vector boson scattering at high masses

- **VBF** like signature are also under the spotlight
- Channel is sensitive for Higgs masses > 600 GeV where, SM Higgs still not excluded.

Features

- $H \rightarrow ZZ \rightarrow 2I2v$ Most sensitive analysis in high mass Higgs searches
- Pioneering high mass Higgs searches in 2011 along with $H \rightarrow ZZ \rightarrow 2I2q$
- Sensitivity Range : 200 GeV 600 GeV

Signature of Signal

 ${\mbox{-}}$ Two high p_T isolated leptons of same flavor and opposite charge with di-lepton mass close to Z peak and large MET

Backgrounds

- **Z+Jets** Most dominant ($\sigma \sim 10^5$ larger than signal)
- Non-Resonant backgrounds like TT-Jets, Single Top and W+Jets
- Di-Boson backgrounds ZZ, WZ, WW
- Sub-dominant backgrounds like QCD

Arun Kumar, University of Delhi, H->ZZ->2l2nu at CMS

Analysis Strategy

Analysis Strategy:

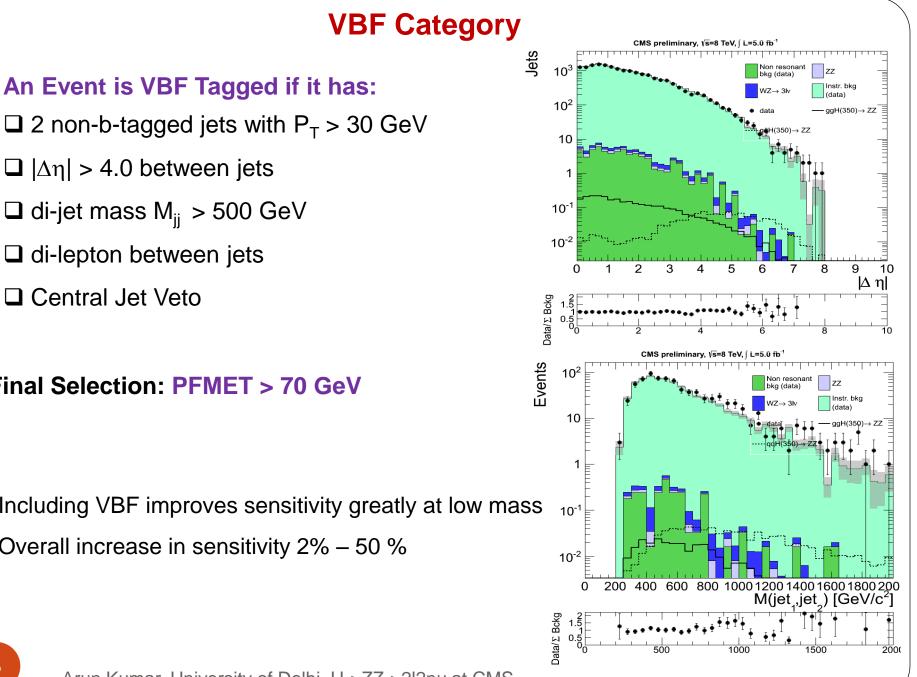
- □ Analysis is optimized separately for Gluon-Gluon and VBF categories.
- □ Selection can be divided into two parts : Pre-Selection + Final Selection

□ Pre-selection:

- □ Events are selected with 2 same flavored, well identified and isolated leptons with di-Lepton mass $|M_{\parallel} M_{7}| < 15$ GeV
- \Box Third Lepton Veto: \rightarrow to suppress WZ background.

□ Min $\Delta \phi$ (jet,PFMET) < 0.5 → reduce the instrumental background from jet mismeasurements.

- \Box P_T (Z) > 55 GeV \rightarrow Boosted Z's
- Anti b-TaggingSoft Muon Veto
- → To suppress TTbar, Single T


We categorize all events based on the number of jets ($P_T > 30$ GeV) in event.

□ Final Selection:

□ Missing Transverse Energy: Mass dependent cut for non-VBF category.

□ Mass dependent two sided Transverse Mass of Higgs cut is applied for non-VBF categories.

$$M_{T}^{2} = \left(\sqrt{P_{TZ}^{2} + M_{II}^{2}} + \sqrt{MET^{2} + M_{II}^{2}}\right)^{2} - \left(\vec{P_{TZ}} + M\vec{E}T\right)^{2}$$

Final Selection: PFMET > 70 GeV

- Including VBF improves sensitivity greatly at low mass
- Overall increase in sensitivity 2% 50 %

Arun Kumar, University of Delhi, H->ZZ->2l2nu at CMS

Background Estimation

In this analysis backgrounds are estimated as follows:

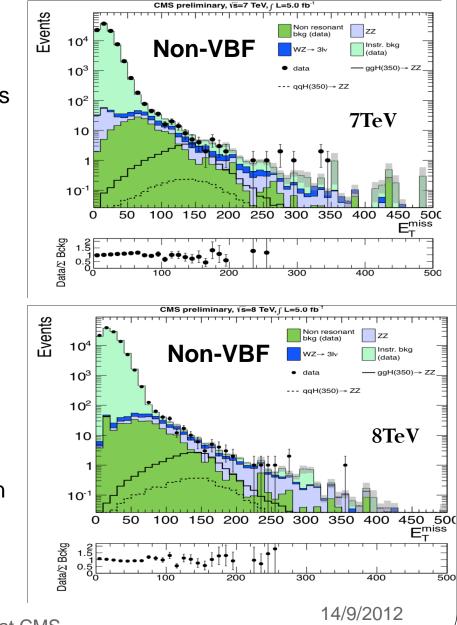
 \Box Z +Jets (mostly instrumental background with fake missing energy) is estimated from data using γ +jets events.

❑ Non resonant backgrounds (Top/WW/W+Jets, have real MET) are estimated using eµ events

□ Irreducible electroweak ZZ background and fully leptonic WZ decays are estimated from Monte Carlo.

Z+Jets Background Estimation

 γ+jets events are used to model Z+Jets from data.


- γ+jets has similar kinematic distributions as Z+Jets
- Larger Statistics

Procedure

>PT distribution of γ 's reweighted to match to Z's

 Number of primary vertex distribution in γ's is reweighted to match to Z's
Each photon is assigned a mass by sampling Z line shape from data
done separately for each event category

Final estimate is taken as half of the prediction from photon events with 100% systematic error on prediction

Non-Resonant Background Estimation

> Estimation of non-resonant backgrounds is performed with standard technique, using $e\mu$ events passing analysis selection ($N_{e\mu}^{SIG}$)

> Using sidebands (55 < m_{\parallel} < 70 and 110 < m_{\parallel} < 200 GeV) of the Z peak a scale factor a is determined from ratio of ee/µµ and eµ events passing MET > 70 GeV and requiring at least one b-tagged jet.

$$\alpha_e = \frac{N_{ee}^{SB}}{N_{e\mu}^{SB}}; \quad \alpha_\mu = \frac{N_{\mu\mu}^{SB}}{N_{e\mu}^{SB}}$$

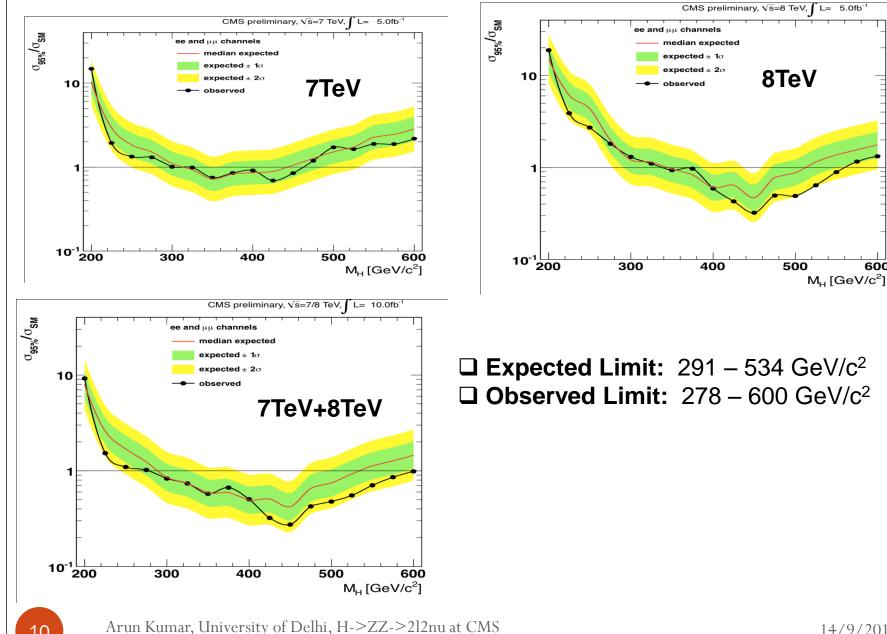
Predicted number of background events is given then as

$$N_{ee}^{SIG} = \alpha_e \cdot N_{e\mu}^{SIG}; \quad N_{\mu\mu}^{SIG} = \alpha_\mu \cdot N_{e\mu}^{SIG}$$

> We treat contribution from $H \rightarrow WW^* \rightarrow 2I_{2v}$ as background and properly accounts on it.

Arun Kumar, University of Delhi, H->ZZ->2l2nu at CMS

14/9/2012


Systematic Uncertainties

Source	Uncertainty [%]
Luminosity	2.2 (7 TeV), 5.0 (8 TeV)
pdf, gluon-gluon initial state	6-11
pdf, quark-quark initial state	3.3-7.6
QCD scale, gluon-gluon initial state (ggH)	7.6-11
QCD scale, quark-quark initial state (VBF)	0.2-2
QCD scale, gluon-gluon initial state (ggZZ)	20
QCD scale, quark-quark initial state (qqVV)	5.8-8.5
Higgs boson line shape	10-30
Signal rescaling (from 7 TeV)	25 (8 TeV VBF)
Anti b-tagging	1-3
Lepton ID+Isolation	2
Lepton momentum scale	1-2
Jet energy scale	1
PU effects, MET	1-3
Trigger	2
non-resonant background estimation from data	25
Z + jets estimation from data	100

Arun Kumar, University of Delhi, H->ZZ->2l2nu at CMS

14/9/2012

14/9/2012

Back Up

14/9/2012

Systematic Uncertainties (1/2)

□ We use QCD scale and PDF uncertainties recommended by the LHC Higgs Cross-Section Working group for signal cross-sections.

- □ We assign a systematic error of 10-30% on signal due to line shape uncertainty on high mass Higgs.
- □ 25% systematic uncertainty due to rescaling of 7TeV samples to 8TeV.
- \Box The cross-sections and theoretical uncertainties for ZZ \rightarrow 2l2v and
- $WZ \rightarrow 3I_V$ were calculated using MCFM with LHAPDF PDFs according to PDF4LHC recommendations.
- □ The systematic uncertainty on small non-resonant background estimate is given by 25% error on α .