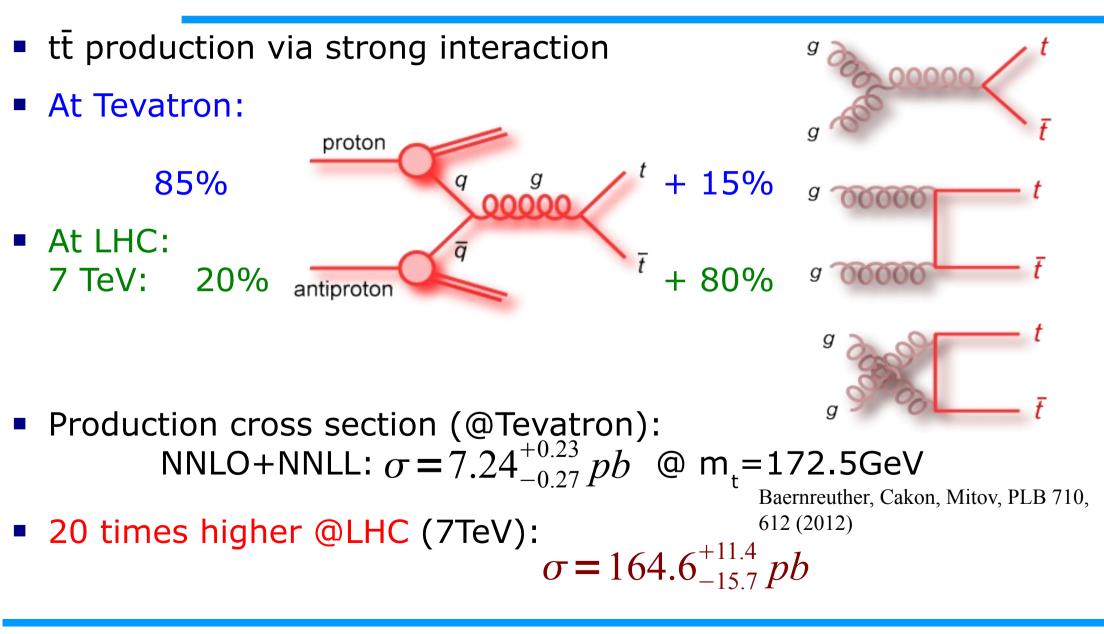
tt Asymmetries at Tevatron and LHC

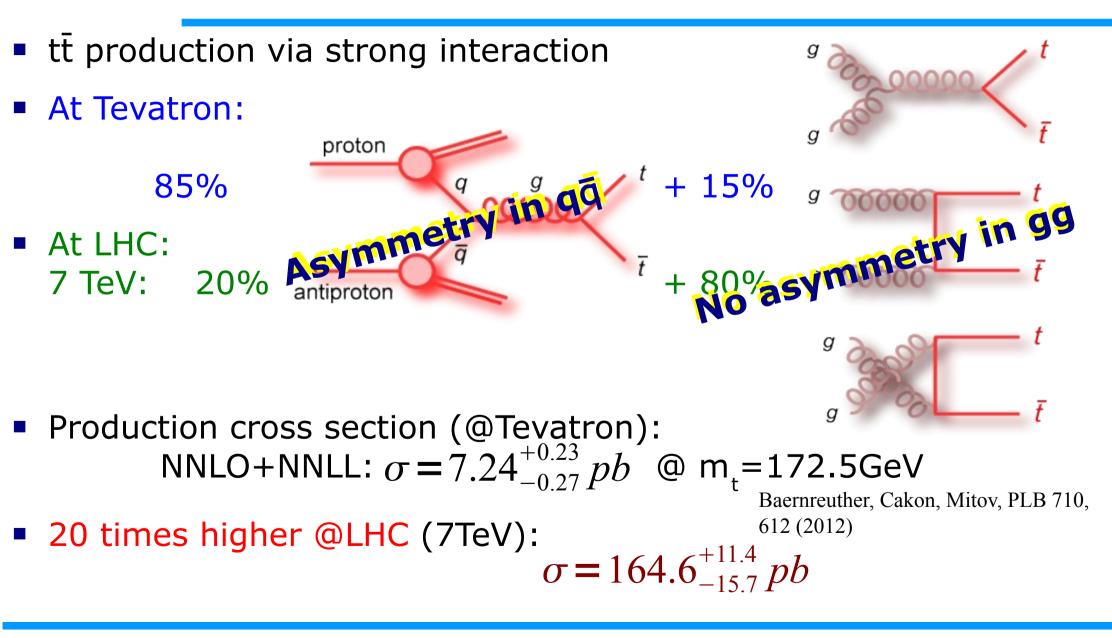
Reinhild Yvonne Peters

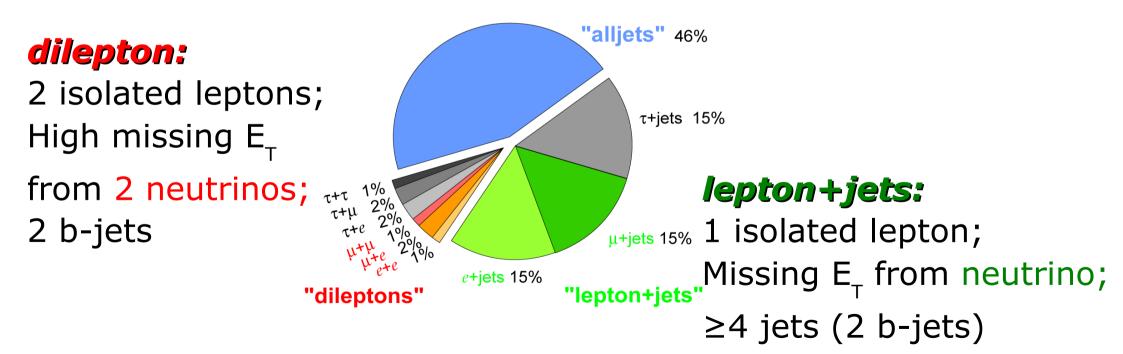
Georg-August University Göttingen & DESY

on behalf of the Tevatron and LHC experiments



- Introduction and Definitions
- Asymmetries at Tevatron
- Asymmetries at LHC
- Conclusion & Outlook


Introduction and Definitions

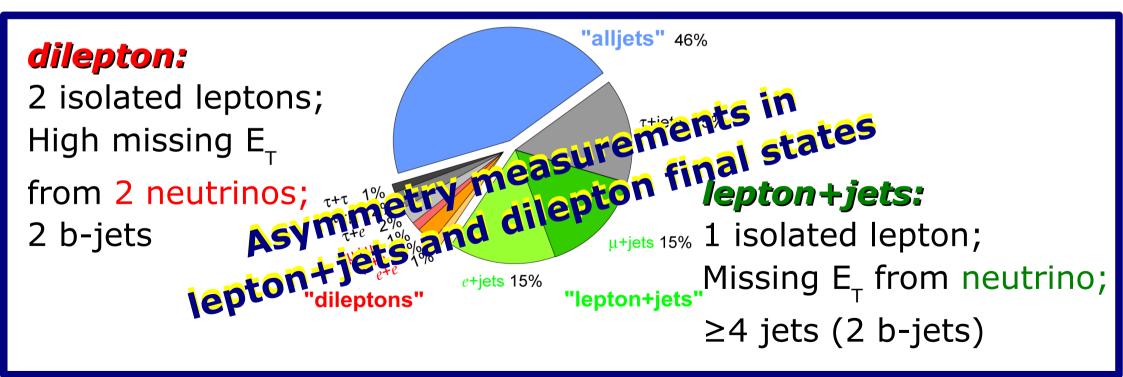

Final States in tt

B(t→W⁺b)=100%

Top Pair Branching Fractions

$t\bar{t} \rightarrow W^+ b W^- \bar{b}$: Final states are classified according to W decay

pure hadronic: ≥6 jets (2 b-jets)


Final States in tt

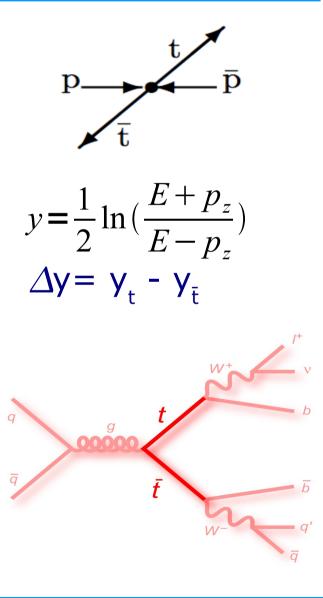
B(t→W⁺b)=100%

Top Pair Branching Fractions

$t\bar{t} \rightarrow W^+bW^-\bar{b}$: Final states are classified according to W decay

pure hadronic: ≥6 jets (2 b-jets)

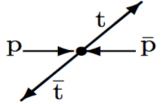
Asymmetry Definitions

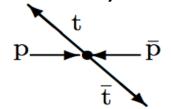

- Do top quarks follow preferentially the initial quark or antiquark direction?
- Several asymmetry definitions can be studied
 - tt Forward backward asymmetry

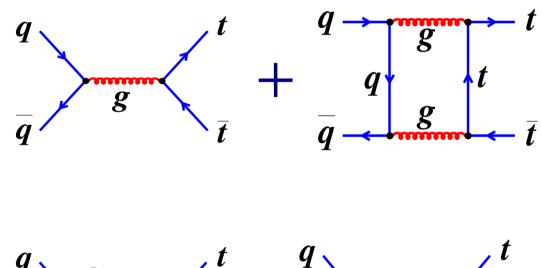
$$A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

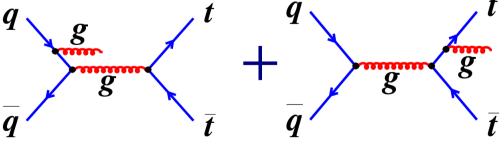
Lepton based asymmetry

$$A_{FB}^{l} = \frac{N(q_{l}y_{l} > 0) - N(q_{l}y_{l} < 0)}{N(q_{l}y_{l} > 0) + N(q_{l}y_{l} < 0)}$$


Complementary measurement to FB asymmetry




Asymmetry Idea


- LO: No charge asymmetry expected
- NLO QCD: Interference between qq diagrams
 - Asymmetry in QCD:Interference of C=1 and C=-1 amplitudes are odd under t ↔ t → cause asymmetry
- Tree level and box diagrams:
 - Positive asymmetry

- Initial and final state radiation:
 - Negative asymmetry

Tevatron and LHC Difference

- Tevatron: pp̄ is CP eigenstate → pp (LHC) is not
 → different way to measure the effect at Tevatron and LHC
- LHC: Quarks valence quarks, antiquark always from the sea
 → antitop less boosted and more central than top in case of asymmetry
- LHC: Measure charge asymmetry

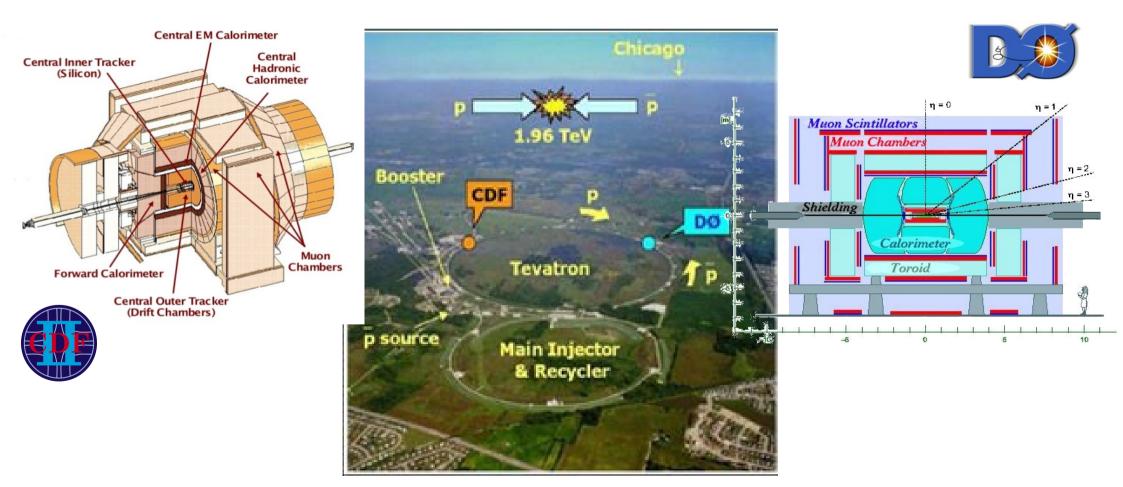
$$A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} \qquad A_{C} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

$$A_{C} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

$$A_{C} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

$$A_{C} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

$$A_{C} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$


$$A_{C} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

$$A_{C} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

$$A_{C} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

$$A_{C} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

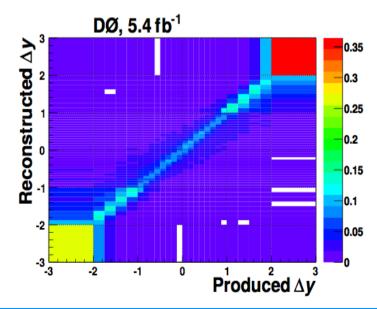
Asymmetries at the Tevatron

SM Predictions at the Tevatron

- Dominant contribution from $q\bar{q}$, but also from gq channels
- Higher order QCD contributions
 - NLO+NNLL by Ahrens et al.; arXiv:1106.6051
 - Approximative NNLO by Kidonakis
- Additionally: QED contributions enhance the asymmetry

Kuhn, Rodrigo, 2011; Hollik, Pagani 2010; Bernreuther, Si 2010

	Pecjak, Top2011	A ^{tī} _{FB} [%]	А ^{рр} [%]
	NLO	$7.32^{+0.69+0.18}_{-0.59-0.19}$	$4.81^{+0.45+0.13}_{-0.39-0.13}$
bb̄ → tt̄ included Extra photonic	NLO+NNLL [Ahrens et. al.'11]	$7.24^{+1.04+0.20}_{-0.67-0.27}$	$4.88^{+0.20+0.17}_{-0.23-0.18}$
	NNLO _{approx} [Kidonakis '11]		$5.2^{+0.0}_{-0.6}$
	EW'/NLO' ($\mu = m_t$) [Bernreuther, Si '10]	0.05	0.04
corrections	EW/NLO ($\mu = m_t$) [Hollik, Pagani '10]	0.22	0.22
NLO PDFs in numerator,	NLO(QCD+EW) [Bernreuther, Si, '12] 8.8±0.6		
mixed QCD and E	W corrections		
12.09.2012	Yvonne Peters		12

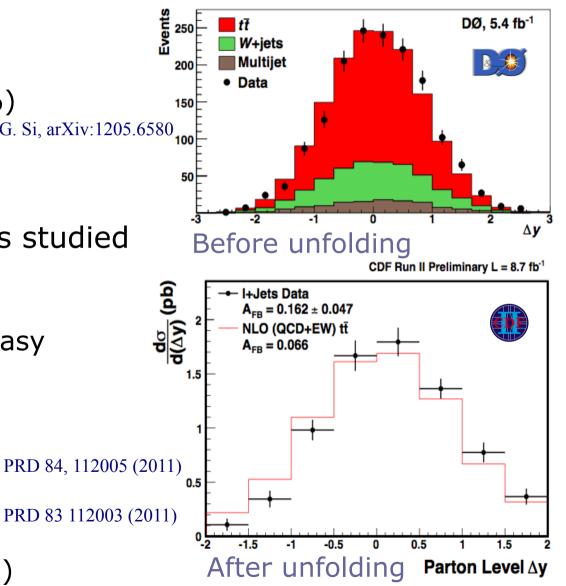


Analysis Strategy I+jets

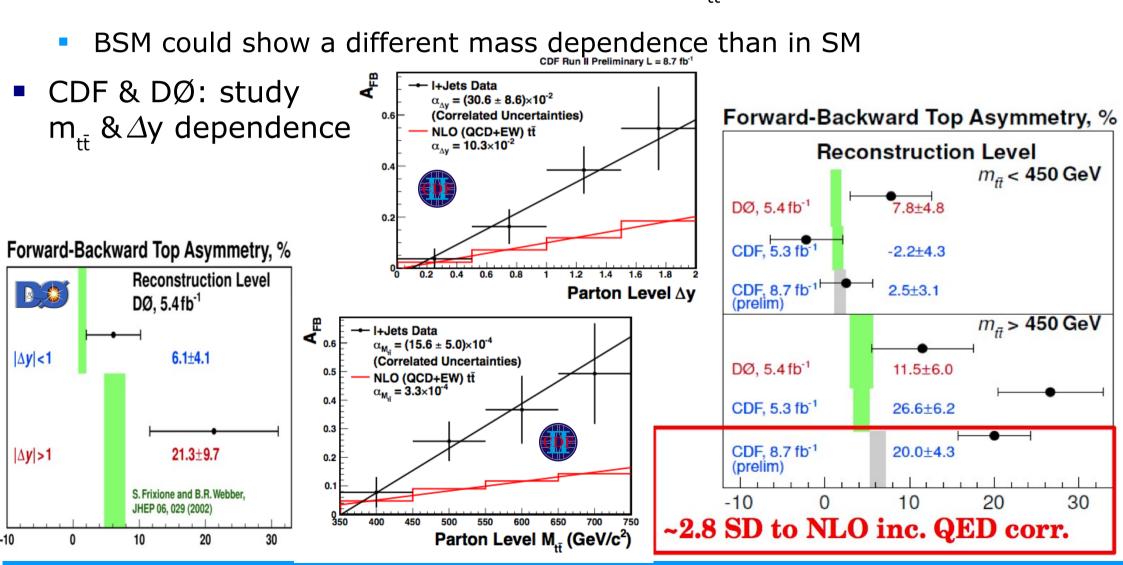
- Select I+jets or dilepton events; get distributions of $y, \Delta y$
 - reconstruction of full tt event using kinematic fitter
- Subtract background from Data
 - DØ: Background fitted with likelihood discriminant
 - CDF: Background from MC prediction and orthogonal samples
 - But: due to acceptance and detector effects: results not comparable
- Unfolding: Correct for acceptance & resolution effects
- CDF: 4 bin matrix inversion in *Ay*

 $\vec{n}_{production} = A^{-1} S^{-1} \vec{n}_{reco}$

- A: (diagonal) acceptance matrix; S: migration matrix
- DØ: regularized unfolding



Results I+jets


- Results after unfolding: CDF: $A_{FB}^{t\bar{t}} = 16.2 \pm 4.7\%$ (NLO (QCD+EW) prediction: 6.6%) DØ: $A_{FB}^{t\bar{t}} = 19.6 \pm 6.5\%$ W. Bernreuther, Z. G. Si, arXiv:1205.6580
 - Statistically limited
 - Several studied modeling issues studied
- Lepton-based asymmetries:
 - Very good resolution → unfolding easy
 - DØ (I+jets): A_{FB}^{-I}=14.2±3.8% (MC@NLO pred: 0.8±0.6%)
 - \rightarrow ~3 sigma away from prediction!
 - CDF: $A_{FB}^{I} = 6.6 \pm 2.5\%$ (NLO (QCD+EW) prediction: 1.6%)

Results I+jets

Asymmetry depends on several variables (m_i, rapidity, etc.)

12.09.2012

Yvonne Peters

Results dilepton

• Various asymmetries can be explored (additional to A_{FB}^{-1} and $A_{FB}^{-t\bar{t}}$)

$$A_{FB}^{ll} = \frac{N(\Delta \eta > 0) - N(\Delta \eta < 0)}{N(\Delta \eta > 0) + N(\Delta \eta < 0)}$$

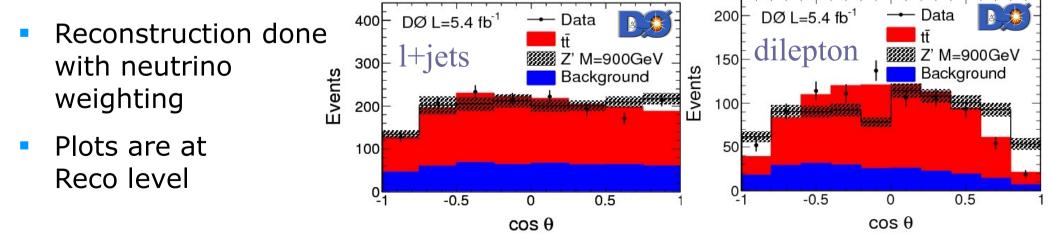
$$A_{FB}^{CP} = \frac{N_{l^{+}} (\eta > 0) - N_{l^{-}} (\eta < 0)}{N_{l^{+}} (\eta > 0) + N_{l^{-}} (\eta < 0)}$$

No reconstruction of the full tt system required except for A_{FB}

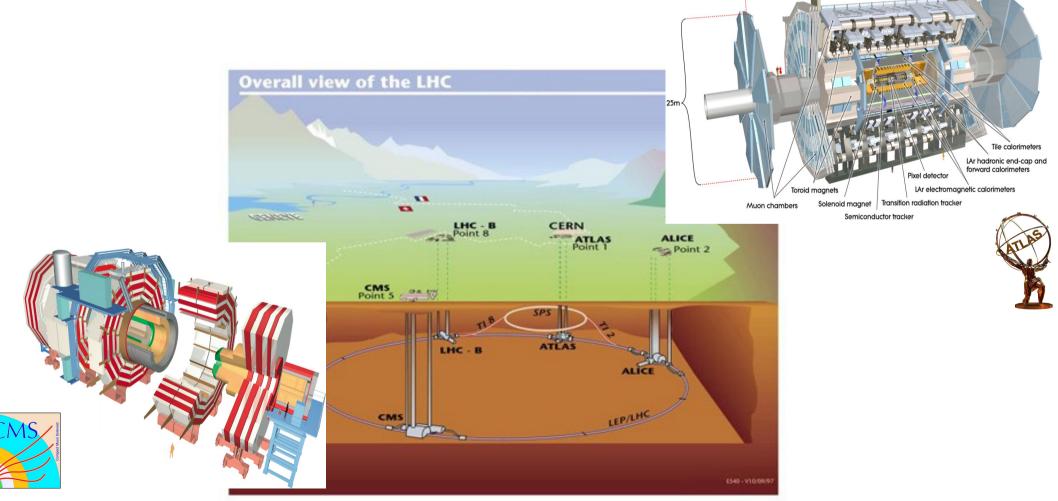
DØ		Unfolded (%)	Predicted NLO QCD+QED (%)	CDF
	A _{FB}	5.8±5.3	4.7±0.1	$A_{FB}^{t\bar{t}} = 42 \pm 16\%$
	A _{FB} ^{II}	5.3±8.4	6.2±0.2	(prediction $6\pm1\%$) A _{FB} = 14±5% (before correction)
	A _{FB} ^{CP}	-1.8 ± 5.3	-0.3±0.1	$T_{FB} = 1 + 2570$ (before correction)

- All statistically limited
 - DØ combination I+jets and dilepton A_{FR} = 11.8±3.2% arXiv:1207.0364 [hep-ex

Top Polarization


Various BSM models predicting asymmetry>SM, predict also top polarization !=0
1

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{i,n}} = \frac{1}{2} \left(1 + \mathcal{P}_n \kappa_i \cos\theta_{i,n} \right)$$


 P_n : polarization; κ_i : spin analyzing power of decay product i;

 θ_i : direction of daughter wrt. chosen axis

First study done by DØ: good agreement with SM at reconstruction level

Asymmetries at the LHC

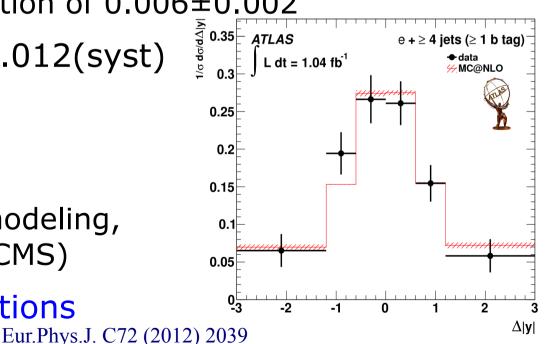
Asymmetry Measurements

- Measurements at ATLAS:
 - A_c in I+jets final state (1.04fb⁻¹): inclusive and $m_{t\bar{t}}$ dependent
 - A_c and A_c["] in dilepton final state 4.7fb⁻¹
 - $A_c^{\ \parallel}$ does not require full $t\bar{t}$ event reconstruction
 - Sensitive to top polarization effect
 → additional information
- Measurements at CMS:
 - A_c in I+jets final state (4.7fb⁻¹)
 - Inclusive
 - Dependent on $m_{t\bar{t}}$, rapidity and $p_{T}^{t\bar{t}}$

 $\frac{N(\Delta|y|>0) - N(\Delta|y|<0)}{N(\Delta|y|>0) + N(\Delta|y|<0)}$

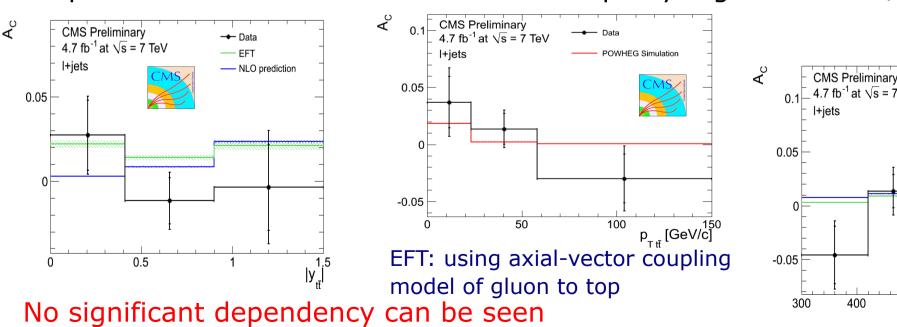
 $N(\Delta|\eta|>0)-N(\Delta|\eta|$

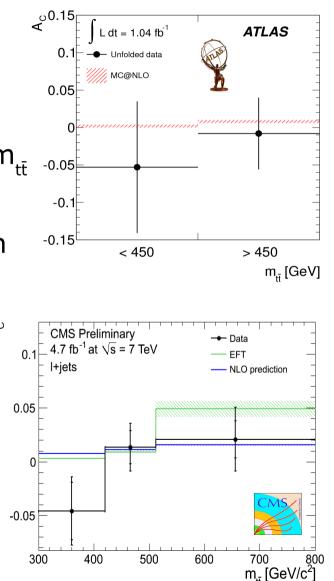
 $\Delta |\eta| = |\eta_{I^1}| - |\eta_{I^2}|$


 $N(\Delta |\eta| > 0) + N(\Delta |\eta| < 0$

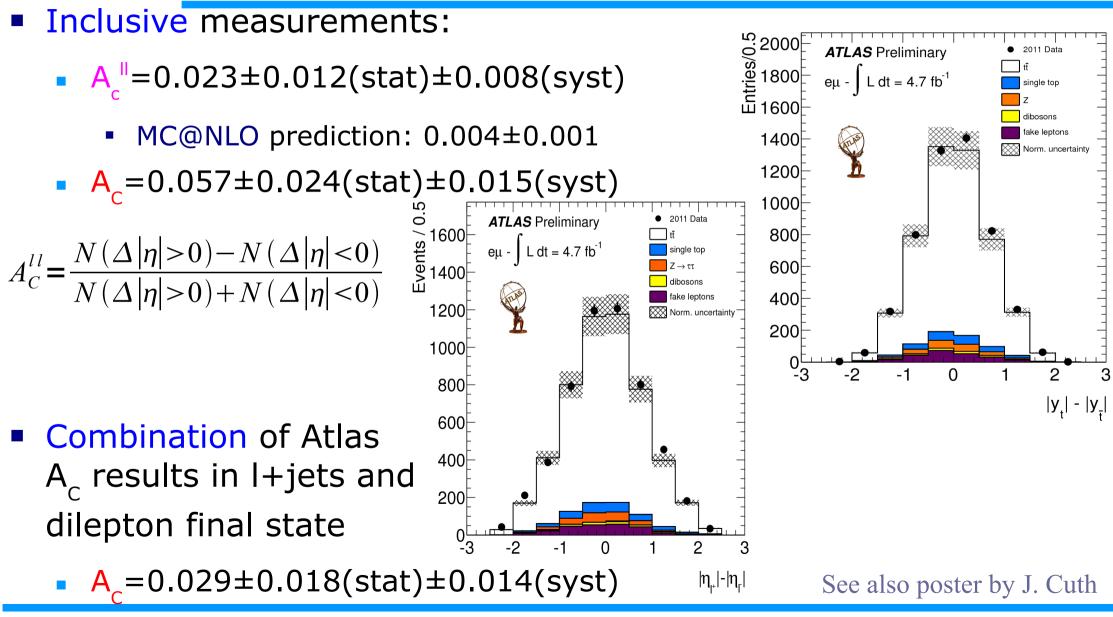
 $\Delta |\mathbf{y}| = |\mathbf{y}_{\dagger}| - |\mathbf{y}_{\dagger}|$

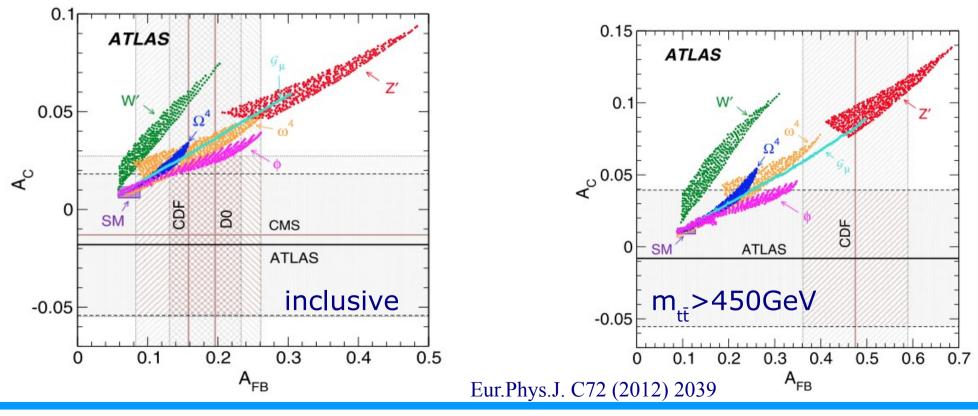
Results I+jets Inclusive


- Correction of detector and acceptance effects via unfolding
 - Atlas: iterative Bayesian unfolding
 - CMS: regularized unfolding
- Atlas: A_c=-0.019±0.028(stat)±0.024(syst)
 - Consistent with MC@NLO prediction of 0.006±0.002
- CMS: A_c=0.004±0.010 (stat)±0.012(syst)
- Systematic uncertainties comparable to statistical
 - Main systematics related to tt̄ modeling,
 JES (Atlas), unfolding method (CMS)
- Good agreement with SM predictions



Results I+jets Differential


- Asymmetry depends on various variables
 - p_T^{tt̄} sensitive to ratio of negative and positive contributions to overall asymmetry
 - $m_{_{f\bar{f}}}$ dependence as $q\bar{q}$ process enhanced for larger $m_{_{f\bar{f}}}$
 - gg-fusion dominant in central rapidity region, qq
 process contributes more for forward rapidity region


Results dilepton

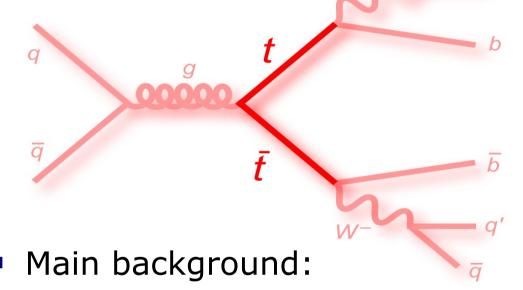
Tevatron and LHC – Model consideration

- LHC measurements disfavor several models
 - Z': outside the measurement
 - Other models: tension with CDF's mass dependence

Yvonne Peters

Summary

- Asymmetry measurements larger than theory prediction at Tevatron
 - → hint for new physics?
- No deviation from SM at LHC
 - \rightarrow several models can be excluded
 - More data available
 → soon sensitive to SM prediction
- Asymmetries at Tevatron statistically limited
- Additional measurements needed to distinguish models and ensure proper modeling $\rightarrow p_{\tau}^{t\bar{t}}$, polarization, Asymmetries in $b\bar{b}$

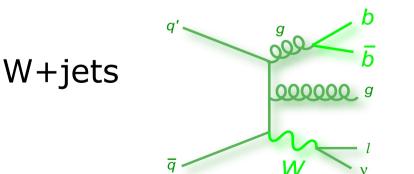


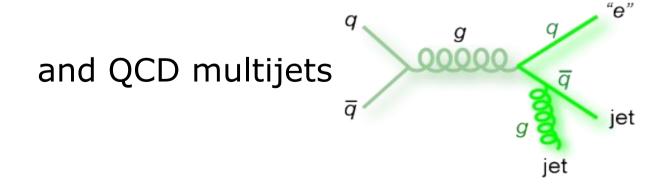
BACKUP

Event Selection I+jets

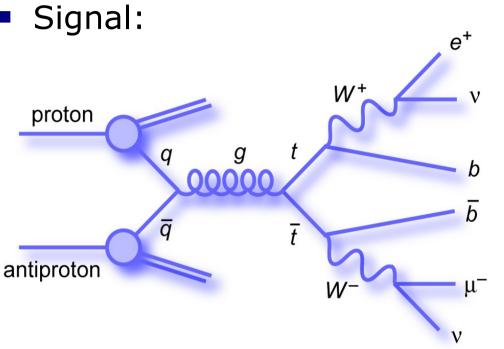
 Enrich signal using its topology: w⁺

Exactly 1 isolated lepton (e or μ) with high p_{T}


Missing p_{τ} for neutrino ($\not E_{\tau}$): >20GeV

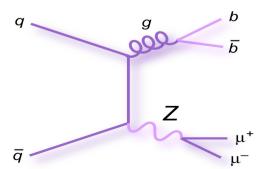

≥4 jets with p_{T} >20GeV;

CDF: |η|<2.0; DØ: |η|<2.5


≥1 jet b-tagged

reconstruction of full tt event using kinematic fitter

Event Selection dilepton


2 leptons (e or μ) with p_T >20GeV; opposite charges

Large $\mathbf{E}_{\mathbf{T}}$ to account for the two neutrinos

≥2 jets

Large H_{T} (scalar sum of lepton & jet $p_{T} \& \not \in_{T}$)

Main background:

and fake lepton (QCD multijet)

Z+jets

Tevatron: Event Selection I+jets

b

v(DØ: | |<2.0)

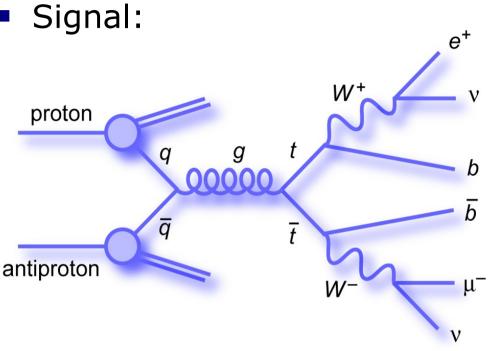
 Enrich signal using its topology: w*

Missing p_{T} for neutrino ($\not\!\!E_{T}$): >20GeV

iet

1 lepton (e or) with p_{τ} >20GeV; | |<1.1

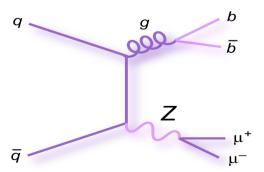
≥4 jets with p_T>20GeV;
CDF: | |<2.0; DØ: | |<2.5


 ≥ 1 jet b-tagged

Main background:

W+jets

Tevatron: Event Selection dilepton

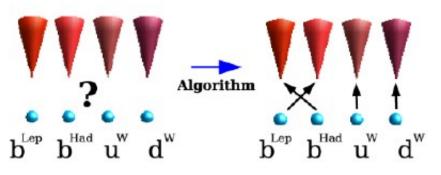


2 leptons (e or) with $p_T > 20 \text{GeV}$; | $_e$ |<1.1 or 1.2<| $_e$ |<2.8; | |<1.1

 \geq 2 jets with p₁>15GeV and | |<2.5

 H_{T} (scalar sum of lepton & jet $p_T \& \not \in_T$)>200GeV

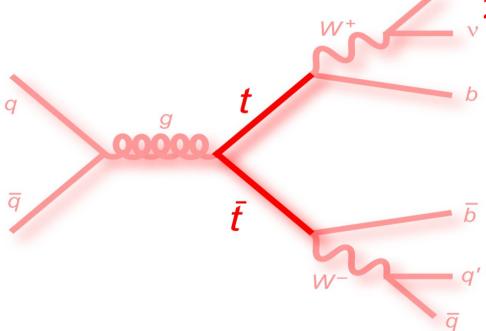
Main background:


and QCD multijets

Z+jets

tt Reconstruction

- L+jets: kinematic fit to reconstruct full event, using
 - Fixed top mass
 - Two jets have to have m_{ii}=m_w
 - B-jet identification
- Experimental resolutions taken into account



 Dilepton: also kinematic fitter, but more dof (2 neutrinos) → use a priori probability distributions as input, calculate probability

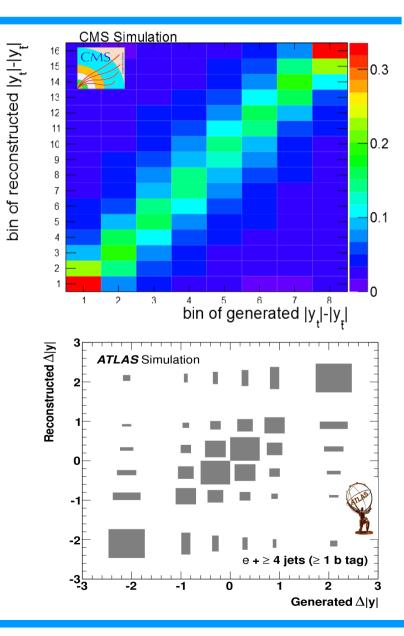
LHC: Selection & Reconstruction

Selection: tt l+jets selection

1 lepton (e or) with $p_T > 30 \text{GeV}$ (Atlas: 25GeV for e, 20GeV for); | |<2.5

Missing p_T for neutrino ($\not\!\!E_T$): no cut for CMS; Atlas: >35GeV

≥4 jets with p_T>30GeV (Atlas: >25GeV);
CMS: | |<2.4; Atlas: | |<2.5</p>


≥1 jet b-tagged

- Reconstruction of tt system:
 - Atlas: likelihood to assign the right combination
 - CMS: ² test

Selection and Unfolding

- Both use standard tt selection
 - multijet/fakes estimated with Matrix Method
 - Background modeling checked in orthogonal samples
 - Reconstruction in dilepton done using matrix element method
- Correction of detector and acceptance effects via unfolding
 - After subtracting background estimate from data
- CMS: regularized unfolding
- Atlas: iterative Bayesian unfolding

Systematics Atlas I+jets

Source of systematic uncertainty on A_C	Electron channel	Muon channel
Detector modelling		
Jet energy scale	0.012	0.006
Jet efficiency and resolution	0.001	0.007
Muon efficiency and resolution	<0.001	0.001
Electron efficiency and resolution	0.003	0.001
b-Tag scale factors	0.004	0.002
Calorimeter readout	0.001	0.004
Charge mis-ID	<0.001	< 0.001
b-Tag charge	0.001	0.001
Signal and background modelling		
Parton shower/fragmentation	0.010	0.010
Top mass	0.007	0.007
$t\bar{t}$ modelling	0.011	0.011
ISR and FSR	0.010	0.010
PDF	<0.001	< 0.001
W + jets normalisation and shape	0.008	0.005
Z + jets normalisation and shape	0.005	0.001
Multijet background	0.011	0.001
Single top	<0.001	< 0.001
Diboson	<0.001	<0.001
MC statistics	0.006	0.005
Unfolding convergence	0.005	0.007
Jnfolding bias	0.004	< 0.001
Luminosity	0.001	0.001
Total systematic uncertainty	0.028	0.024

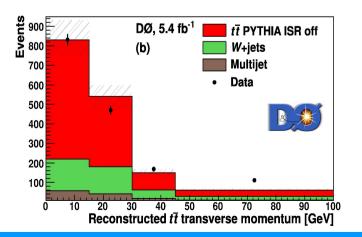
Systematics CMS I+jets

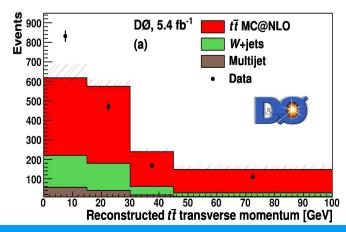
Systematic uncertainty	inclusive A_C
JES	0.002
JER	0.002
Pileup	0.001
Generator	0.001
Migration matrix	0.002
Unfolding	0.008
W+jets	0.004
Multijet	0.001
Lepton ID/sel. efficiency	0.006
Q^2 scale	0.002
Hadronization	0.001
PDF	0.002
Total	0.012

Systematics Atlas dilepton

	ee	еµ	μμ
Signal and background modeling			
Signal generator	0.011	0.003	0.002
ISR and FSR	0.004	0.004	0.006
Parton shower/fragmentation	0.001	0.004	0.003
PDF	<0.001	<0.001	<0.001
Z+jets	0.005	0.004	0.001
Diboson	<0.001	<0.001	<0.001
Single top	<0.001	<0.001	<0.001
Multijet background	0.014	0.002	<0.001
Detector modeling			
Jet efficiency and resolution	0.008	0.001	0.003
Jet energy scale	0.006	0.001	0.002
Muon efficiency and resolution	<0.001	0.001	0.002
Electron efficiency and resolution	0.005	0.003	<0.001
Calibration	0.019	0.002	0.004
Luminosity	0.002	<0.001	<0.001
Total	0.029	0.009	0.009

	ee	еµ	μμ
Signal and background modeling			
Signal generator	0.014	0.009	0.002
ISR and FSR	0.008	0.002	0.018
Parton shower/fragmentation	0.001	0.001	0.001
PDF	0.001	<0.001	<0.001
Z+jets	0.001	0.006	0.002
Diboson	<0.001	<0.001	<0.001
Single top	<0.001	<0.001	<0.001
Multijet background	0.012	0.010	0.001
Detector modeling			
Jet efficiency and resolution	0.007	0.001	0.005
Jet energy scale	0.003	0.002	0.006
Muon efficiency and resolution	0.004	0.003	0.005
Electron efficiency and resolution	0.013	0.006	0.002
Calibration	0.004	0.001	0.002
Luminosity	<0.001	0.001	<0.001
Total	0.028	0.017	0.021


Table 4: List of all systematic uncertainties on the lepton-based asymmetry.


able 5: List of all systematic uncertainties on the $t\bar{t}$ -based asymmetry.

Modeling Issues

- Sensitivity of asymmetry prediction to modeling studied at DØ
- Noted a dependence on p_T^{tt̄}
 - e. g. when switching angular coherence between top and initial parton shower on/off
 - Effect included as systematic uncertainty for now (1.6%)
- Top pair p_{T} difficult to model in data

A 0.3 MC@NLO 3.4 0.2 PYTHIA 6.425 S0A-Pro **0.1**⊢ ----- PYTHIA 6.425 D6-Pro angular coherence off -0.1F angular coherence on -0.2-0.3 -0.4 20 10 30 90 tt transverse momentum [GeV]

> → better understanding needed (dedicated measurement)

12.09.2012