Recent progress in Lattice QCD

Stephan Dürr

University of Wuppertal Jülich Supercomputing Center

PIC 2012

Strbske Pleso, Slovakia
14 September 2012

Origin of mass: EW versus QCD phase transition

Evolution of the Universe

- EW symmetry breaking (times Yukawa couplings) generates quark masses: $m_{u}=2.4 \pm 0.7 \mathrm{MeV}, m_{d}=4.9 \pm 0.8 \mathrm{MeV}, m_{s}=105 \pm 25 \mathrm{MeV}$ [PDG'10]
- QCD chiral/conformal symmetry breaking generates nucleon mass: $M_{N} \simeq 870 \mathrm{MeV}$ at $m_{u d}=0$ (to be compared to 940 MeV at $m_{u d}^{\text {phys }}$)

Lattice QCD (1): combined UV/IR regulator

QCD Lagrangian contains quarks and gluons [Fritzsch, Gell-Mann and Leutwyler (1973)]

$$
\mathcal{L}_{\mathrm{QCD}}=\frac{1}{4} \operatorname{Tr}\left(F_{\mu \nu} F_{\mu \nu}\right)+\sum_{i=1}^{N_{f}} \bar{q}^{(i)}\left(D D+m^{(i)}\right) q^{(i)}+\mathrm{i} \theta \frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left(F_{\mu \nu} F_{\rho \sigma}\right)
$$

- QCD must be regulated both in the UV and in the IR to make it well-defined.
- The lattice does the job through $a>0$ and $V=L^{4}<\infty$, but other options are possible. In fact, each gauge/fermion action is a different regulator.
- For $a \rightarrow 0$ correlation lengths diverge, but ratios ξ_{π} / ξ_{Ω} stay finite (renormalization). The extrapolations $a \rightarrow 0$ and $V \rightarrow \infty$ are performed in dimensionless observables.
- The result is independent of the action, thanks to universality [Wilson].

> The lattice is not a model of QCD, it is (one possible) definition of QCD !

Lattice QCD (2): scale hierarchies

typical spacing: $0.05 \mathrm{fm} \leq a \leq 0.20 \mathrm{fm}$ $1 \mathrm{GeV} \leq a^{-1} \leq 4 \mathrm{GeV}$ typical length: $2 \mathrm{fm} \leq L \leq 6 \mathrm{fm}$ require (UV): $\quad a m_{q} \ll 1$
require (IR): $\quad M_{\pi} L \geq 4$

u work near $m_{u d} \gtrsim m_{u d}^{\text {phys }}$	$\overbrace{\text { interpolate to }}^{c}$	(t) $m_{s}^{\text {phys }}, m_{c}^{\text {phys }}$
$\overbrace{\text { extrapolate }}$		
$m_{b} \rightarrow m_{b}^{\text {phys }}$		

In QCD with N_{f} flavors, $N_{f}+1$ observables used to set quark masses and scale.

Lattice QCD (3): quick consumer guide

Points to be considered when using/comparing LQCD results:
(1) Has the continuum limit $(a \rightarrow 0)$ been taken?
(2) Are the finite-volume effects (from $L<\infty$) under control ?
(3) Are the simulations performed anywhere close to $M_{\pi}=135 \mathrm{MeV}$?
(4) Advanced: are theoretical uncertainties properly assessed/propagated ?
(5) Expert: algorithm details, treatment of isospin breakings, resonances, ...

Example regarding the first point:

- continuum limit is universal [Wilson]
- deviation at finite a may be substantial

Interesting limits tend to be expensive:
$\mathrm{CPU} \propto 1 / a^{4-6}, \mathrm{CPU} \propto L^{5}, \mathrm{CPU} \propto 1 / m_{q}^{1-2}$

Talk outline

- Lattice QCD
- Hadron spectroscopy
- Spectra of stable versus unstable/mixing hadrons
- Strangeness in the nucleon and dark matter
- Scattering of $\pi \pi, \pi K, K K, \pi N, N N$ and nuclear physics
- Flavor physics and FLAG effort
- Quark masses: $m_{u}, m_{d}, m_{s}, m_{c}$
- Decay constants, form factors and CKM-unitarity
- Kaon mixing: $B_{K}, B_{\mathrm{BSM}}, K \rightarrow 2 \pi$ amplitude
- Interlude: algorithms/machines
- Other topics
- QCD thermodynamics at $\mu=0$ and $\mu>0$
- Large N_{c}, large N_{f}, different fermion representations
- $N_{f}=1+1+1+1$ simulations with electromagnetism
- Epilogue: (clusters of) topics not covered

Hadron spectroscopy

Spectra of stable hadrons (1): $N_{f}=0$ versus $N_{f}=2+1$

CP-PACS (2000, left, $N_{f}=0$) versus PACS-CS (2009, right, $N_{f}=2+1$)

\longrightarrow Quenched approximation is qualitatively good, but differs from real world (2000)

Spectra of stable hadrons (2): simulated M_{π}, L, a


```
* ETMC '09 (2)
- ETMC '10 (2+1+1)
- MILC'10
+ QCDSF'10 (2)
- QCDSF-UKQCD '10
- BMWc'10
- BMWc'08
- PACS-CS '09
- RBC/UKQCD '10
- JLQCD/TWQCD '09
- HSC '08
+ BGR '10 (2)
* CLS '10(2)
```

Challenge: tune ($m_{u d}, m_{s}$) to the (a-priori unknown) physical value, keeping L large enough and a small enough in every simulation point

Spectra of stable hadrons (3): approaching ($\left.m_{u d}^{\text {phys }}, m_{s}^{\text {phys }}\right)$

Strategy 1: PACS-CS/BMW-c/... lower $m_{u d}$ while keeping m_{s} (roughly) constant Strategy 2: QCDSF lower $m_{u d}$ while keeping $2 m_{u d}+m_{s}$ constant

Spectra of stable hadrons (4): final result

After $a \rightarrow 0, L \rightarrow \infty, M_{\pi}=135 \mathrm{MeV}$ agreement with experiment [S. Dürr et al., Science 322, 1224 (2008)]

Spectra of unstable/mixing hadrons (1): excited baryons

Excited state spectrum of the N (left), Δ (middle), Ω (right)
Bulava et al. [Hadron Spectrum Collaboration], Phys. Rev. D 82, 014507 (2010)

Spectra of unstable/mixing hadrons (2): mixing of $\eta-\eta^{\prime}$

Connected versus disconnected contributions:

Matrix-valued correlator is rotated to mass eigenstates:

- RBC/UKQCD Christ et al, Phys. Rev. Lett. 105 (2010) 241601 [arXiv:1002.2999]

- ETMC Ottnad et al, arXiv:1206.6719

Spectra of unstable/mixing hadrons (3): more isoscalars

Lattices with $M_{\pi}=396 \mathrm{MeV}$, strange-light mixing is $\theta_{\eta-\eta^{\prime}}=42(1)^{\circ}, \theta_{\omega \phi}=1.7(2)^{\circ}$ Dudek et al, Phys. Rev. D 83 (2011) 111502 [arXiv:1102.4299]

Similar results for charmonium: Bali, Collins, Ehmann, Phys. Rev. D 84 (2011) 094506

Gregory et al, arXiv:1208.1858

Nucleon sigma terms and dark matter

Composition of the universe: 73% dark energy, 23% dark matter, 4% baryons

Dark matter stays dark, unless WIMPNucleon scattering can be probed down to tiny cross-sections.

Significant uncertainty from the matrix elements [RGI, dimension of mass] $\sigma_{u d}=m_{u d}\langle N| u \bar{u}+d \bar{d}|N\rangle$ and $\sigma_{s}=2 m_{s}\langle N| s \bar{s}|N\rangle$ [be aware of factor 2].
$\sigma_{u d}$ can be determined from πN scattering and Chiral Perturbation Theory (ChPT). σ_{s} obtained from $\sigma_{0}-\sigma_{u d}$, where $\sigma_{0}=m_{u d}\langle N| u \bar{u}+d \bar{d}-2 s \bar{s}|N\rangle$ has large uncertainty.

Lattice can compute $\sigma_{u d}$ and σ_{s} from 3-pt function or via Feynman-Hellman theorem, $\sigma_{u d}=m_{u d} \frac{\partial M_{N}}{\partial m_{u d}}=M_{\pi}^{2} \frac{\partial M_{N}}{\partial M_{\pi}^{2}} \quad$ and $\quad \sigma_{s}=2 m_{s} \frac{\partial M_{N}}{\partial m_{s}}=\left(4 M_{K}^{2}-2 M_{\pi}^{2}\right) \frac{\partial M_{N}}{\partial\left(2 M_{K}^{2} M_{\pi}^{2}\right)}$.

- Feynman-Hellman: measure slope in M_{N} versus M_{π}^{2}

Budapest-Marseille-Wuppertal Collaboration

Budapest-Marseille-Wuppertal Collaboration

$66.7(1.3)(?)$	\times	Alexandrou et al, PRD 78 (2008) 014509, [0803.3190]
$84(17)(20)$	\times	Walker-Loud et al, PRD 79 (2009) 054502, [0806.4549]
$47(9)(3)$	$62(30)(8)$	Young et al, PRD 81 (2010) 014503, [0901.3310]
$75(15)(?)$	\times	Ishikawa et al, PRD 80 (2009) 054502, [0905.0962]
$59(2)(17)$	$-8(46)(50)$	Camalich et al, PRD 82 (2010) 074504, [1003.1929]
$39(4)\left({ }_{-7}^{+18}\right)$	$67(27)\left({ }_{-47}^{+55}\right)$	Durr et al [BMW], PRD 85 (2012) 014509, [1109.4265]
\times	$79(14)(9)$	Freeman et al [MILC], arXiv:1204.3866
$45(6)(5)$	$44(12)(0)$	Shanahan et al, arXiv:1205.5365
$37(8)(6)$	\times	Bali et al [QCDSF], arXiv:1206.7034

- Nuclear 3-pt function $\langle N| q \bar{q}|N\rangle$ with disconnected contributions

$$
\begin{array}{cc}
\hline 38(9)(8) & 22(26)\binom{(+6}{\hline-6} \\
\times & \text { Bali et al [QCDSF], Phys.Rev. D85 (2012) } 054502 \\
\times & 17(28)(30)
\end{array} \text { Ohki et al [JLQCD], arXiv:1208.4185 }
$$

A straight (unweighted) average of all central values and total errors would suggest that $\sigma_{u d}=54(13) \mathrm{MeV}$ and $\sigma_{s}=40(36) \mathrm{MeV}$ [with my factor 2].

Scattering of $\pi \pi, \pi K, K K, \pi N, N N$

Scattering length and phase-shift can be determined in Euclidean space from tower of states in finite volume [Lüscher 1991].

Example: L-dependence of states with $\pi \pi$ or ρ quantum numbers is different for small (dashed blue) versus large (full red) $g_{\pi \pi \rho}$.

Original framework by Lüscher refined in many respects [Rummukainen and Gottlieb, Rusetsky et al] and successfully applied to a variety of systems.

Method in practice rather demanding, since limited number of L values available, and extraction of high-lying states remains a challenge.

Results on $\pi \pi, \pi K, K K, \pi D, \pi N, N N, \ldots$ from various groups, e.g. Beane/Savage et al [NPLQCD], Dudek et al [HSC], Lang et al, Mohler et al, Aoki et al [HAL-QCD], ...

New hope for g_{A} on the lattice

Among "nuclear structure" quantities g_{A} has been particularly difficult to postdict correctly (Alexandrou, Lat 2010).

Now, there is new hope from "summation method" by CLS / Mainz-group.

Flavor physics and FLAG

Quark masses (1): anatomy of $N_{f}=2+1$ computation

1. Choose observables to be "burned", e.g. $M_{\pi}, M_{K}, M_{\Omega}$ in $N_{f}=2+1 \mathrm{QCD}$, and get "polished" experimental values, e.g. $M_{\pi}=134.8(3) \mathrm{MeV}, M_{K}=494.2(5) \mathrm{MeV}$ in a world without isospin splitting and without electromagnetism [arXiv:1011.4408].
2. For a given bare coupling β (yields a) tune bare masses $1 / \kappa_{u d, s}$ such that the ratios $M_{\pi} / M_{\Omega}, M_{K} / M_{\Omega}$ assume their physical values (in practice: inter-/extrapolation).
3. Read off $1 / \kappa_{u d, s}$ or determine bare $a m_{u d, s}$ via AWI and convert them (perturbatively or non-perturbatively) to the scheme of your choice (e.g. $\overline{\mathrm{MS}}$ at $\mu=3 \mathrm{GeV}$).
4. Repeat steps 2 and 3 for at least 3 different lattice spacings and extrapolate the (finite-volume corrected) result to the continuum via Symanzik scaling.

Depending on details, step 3 can be rather demanding [RI/MOM, SF renormalization]. Below, guided tour using plots from BMW-collaboration [arXiv:1011.2403,1011.2711].

Quark masses (2): Final result for ratio $m_{s} / m_{u d}$

In QCD ratios like $m_{s} / m_{u d}$ are renormalization group invariant (RGI), hence step 3 in this list is skipped (detail: we invoke αa and a^{2} scaling).

Final result $m_{s} / m_{u d}=27.53(20)(08)$ amounts to 0.78% precision.

Quark masses (3): $N_{f}=3$ RI-running extrapolation for Z_{S}

Evolution $Z_{S}^{\mathrm{RI}}(\mu) / Z_{S}^{\mathrm{RI}}(4 \mathrm{GeV})$ has no visible cut-off effects among three finest lattices:

\longrightarrow separate continuum limit with $R_{S}^{\mathrm{RI}}(\mu, 4 \mathrm{GeV})=\lim _{\beta \rightarrow \infty} Z_{S, \beta}^{\mathrm{RI}}(4 \mathrm{GeV}) / Z_{S, \beta}^{\mathrm{RI}}(\mu)$

Quark masses (4): $N_{f}=3 \mathrm{RI}$-scheme-running ratio for Z_{S}

On the finest lattice we make contact within errors to 4-loop PT for $\mu \geq 4 \mathrm{GeV}$:

Quark masses (5): $N_{f}=3 \mathbf{R I}$ and $\overline{\mathrm{MS}}$ perturbative series for Z_{S}

- RI series (left) converges less convincingly than $\overline{\mathrm{MS}}$ series (right)
- difference "4-loop" to "4-loop/ana" indicates size of 5-loop effects
- ratio suggests that higher-loop effects in RI are $<1 \%$ at $\mu=4 \mathrm{GeV}$
- ratio suggests that higher-loop effects in $\overline{\mathrm{MS}}$ are negligible down to $\mu=2 \mathrm{GeV}$

Quark masses (6): Final results for m_{s} and $m_{u d}$

Good scaling of $m_{u d, s}^{\mathrm{RI}}(4 \mathrm{GeV})$ out to the coarsest lattice ($a \sim 0.116 \mathrm{fm}$):

Conversion with analytical 4-loop formula at 4 GeV and downwards running in $\overline{\mathrm{MS}}$:

	$m_{u d}$	m_{s}
$\mathrm{RI}(4 \mathrm{GeV})$	$3.503(48)(49)$	$96.4(1.1)(1.5)$
RGI	$4.624(63)(64)$	$127.3(1.5)(1.9)$
$\overline{\mathrm{MS}}(2 \mathrm{GeV})$	$3.469(47)(48)$	$95.5(1.1)(1.5)$

$\mathrm{RGI} / \overline{\mathrm{MS}}$ results (table 1.9% prec.) need to be augmented by a $\sim 1 \%$ conversion error.

Quark masses (7): splitting $m_{u d}$ with information from $\eta \rightarrow 3 \pi$

The process $\eta \rightarrow 3 \pi$ is highly sensitive to QCD isospin breaking (from $m_{u} \neq m_{d}$) but rather insensitive to QED isospin breaking (from $q_{u} \neq q_{d}$), and this is captured in Q.

Rewrite the Leutwyler ellipse in the form

$$
\frac{1}{Q^{2}}=4\left(\frac{m_{u d}}{m_{s}}\right)^{2} \frac{m_{d}-m_{u}}{m_{d}+m_{u}}
$$

and use the conservative estimate $Q=22.3(8)$ of [Leutwyler, Chiral Dynamics 09] together with our result $m_{s} / m_{u d}=27.53(20)(08)$ to get the asymmetry parameter

$$
\frac{m_{d}-m_{u}}{m_{d}+m_{u}}=0.381(05)(27) \quad \longleftrightarrow \quad m_{u} / m_{d}=0.448(06)(29)
$$

from which we then obtain individual m_{u}, m_{d} values (note: $m_{u}=0$ strongly disfavored)

	m_{u}	m_{d}	m_{s}
$\mathrm{RI}(4 \mathrm{GeV})$	$2.17(04)(10)$	$4.84(07)(12)$	$96.4(1.1)(1.5)$
RGI	$2.86(05)(13)$	$6.39(09)(15)$	$127.3(1.5)(1.9)$
$\overline{\mathrm{MS}}(2 \mathrm{GeV})$	$2.15(03)(10)$	$4.79(07)(12)$	$95.5(1.1)(1.5)$

FLAG effort (1): collaborators and goal

$$
\text { FLAG }=\text { Flavianet Lattice Averaging Group }
$$

Members [as of 2010]:
Gilberto Colangelo (Bern)
Stephan Dürr (Wuppertal/Jülich, BMW)
Andreas Jüttner (Southampton \rightarrow CERN, RBC/UKQCD)
Laurent Lellouch (Marseille, BMW)
Heiri Leutwyler (Bern)
Vittorio Lubicz (Rome 3, ETM)
Silvia Necco (CERN, Alpha)
Chris Sachrajda (Southampton, RBC/UKQCD)
Silvano Simula (Rome 3, ETM)
Tassos Vladikas (Rome 2, Alpha and ETM)
Urs Wenger (Bern, ETM)
Hartmut Wittig (Mainz, Alpha)

Goal:
Compile results from lattice calculations in a form useful to non-lattice experts.

FLAG effort (2): methodology and quantities covered

For each quantity FLAG provides:

- complete list of references
- summary of essential ingredients of each study $\left[N_{f}\right.$, action, ...]
- averages for "mature" quantities
- pressure on reader to cite original papers !

Quantities covered in first edition [Eur.Phys.J. C71 (2011) 1695, arXiv:1011.4408]:

- light quark masses $m_{u d}, m_{s}$
- chiral low-energy constants (LECs)
- decay constants (of pions and kaons)
- form factors (of pions and kaons)
- kaon bag parameter B_{K}

In 2012 FLAG merged with "latticeaverages.org", and expanded with new structure [AB, EB]. Future updates of the report under http://itpwiki.unibe.ch/flag .

FLAG effort (3): color coding

FLAG-1 definitions [will be subject to change with each new edition] as follows
Continuum extrapolation:

* 3 or more lattice spacings and at least 2 points below 0.1 fm
- 2 or more lattice spacings and at least 1 point below 0.1 fm
- otherwise

Finite-volume effects:
$\star \quad\left(M_{\pi} L\right)_{\min }>4$ or at least 3 volumes

- $\left(M_{\pi} L\right)_{\min }>3$ and at least 2 volumes
- otherwise

Chiral extrapolation:
$\star M_{\pi, \text { min }}<250 \mathrm{MeV}$

- $250 \mathrm{MeV} \leq M_{\pi, \min } \leq 400 \mathrm{MeV}$
- $M_{\pi, \min }>400 \mathrm{MeV}$

Renormalization (where applicable):

* non-perturbatively
- 2-loop perturbation theory
- otherwise

FLAG effort (4): compilation of quark masses

Collaboration

PACS-CS 10	[64]	P	*	■	\square	*	a	2.78(27)	86.7(2.3)
MILC 10A	[103]	C	\bullet	\star	夫	\bullet	-	$3.19(4)(5)(16)$	-
HPQCD 10	[104]	A	\bullet	\star	\star	\star	-	$3.39(6)^{*}$	92.2(1.3)
BMW 10A, 10B ${ }^{+}$	[65, 105]	P	\star	\star	\star	*	b	$3.469(47)(48)$	$95.5(1.1)(1.5)$
RBC/UKQCD 10A	[106]	P	\bullet	\bullet	*	\star	c	$3.59(13)(14)(8)$	$96.2(1.6)(0.2)(2.1)$
Blum $10{ }^{\dagger}$	[74]	P	\bullet	-	\bullet	\star	-	3.44(12)(22)	97.6(2.9)(5.5)
PACS-CS 09	[42]	A	*	\square	-	*	a	$2.97(28)(3)$	$92.75(58)(95)$
HPQCD 09	[107]	A	\bullet	\star	\star	\star	-	3.40(7)	92.4(1.5)
MILC 09A	[59]	C	\bullet	\star	*	\bullet	-	3.25 (1)(7)(16)(0)	$89.0(0.2)(1.6)(4.5)(0.1)$
MILC 09	[6]	A	\bullet	\star	\star	\bigcirc	-	$3.2(0)(1)(2)(0)$	$88(0)(3)(4)(0)$
PACS-CS 08	[63]	A	*	-	-	-	-	2.527(47)	72.72(78)
RBC/UKQCD 08	[108]	A	\bullet	-	*	*	-	3.72 (16)(33)(18)	107.3(4.4)(9.7)(4.9)
$\begin{aligned} & \text { CP-PACS/ } \\ & \text { JLQCD } 07 \end{aligned}$	[109]	A	■	夫	\star	\square	-	$3.55(19)\left({ }_{-20}^{+56}\right)$	$90.1(4.3)\left({ }_{-4.3}^{+16.7}\right)$
HPQCD 05	[110]	A	\bullet	\bullet	-	\bullet	-	$3.2(0)(2)(2)(0)^{\ddagger}$	$87(0)(4)(4)(0)^{\ddagger}$
MILC 04, HPQCD/ MILC/UKQCD 04	[77, 111]	A	\bullet	\bullet	\bullet	■	-	$2.8(0)(1)(3)(0)$	$76(0)(3)(7)(0)$

[^0]
FLAG effort (5): suggested values of m_{u}, m_{d}, m_{s}

\longrightarrow apparent "tension" between $N_{f}=2$ (white band) and $N_{f}=2+1$ (grey band) likely due to better non-perturbative renormalization in the latter case.
$\longrightarrow N_{f}=2+1$ estimates: $m_{u}=2.19(15) \mathrm{MeV}, m_{d}=4.67(20) \mathrm{MeV}, m_{s}=94(3) \mathrm{MeV}$.
\Longrightarrow FLAG estimates are significantly more precise than PDG estimates.

Decay constants, form factors and CKM-unitarity

- $\left|V_{\mathrm{us}}\right|$ from $K \rightarrow \pi$ transition form factor $f_{+}(0)$

Experiment can determine $\left|V_{\text {us }}\right| f_{+}(0)$, lattice can determine $f_{+}(0)$.

$q \equiv p-p^{\prime}$ momentum transfer

$$
\left\langle\pi\left(p^{\prime}\right)\right| \bar{s} \gamma_{\mu} u|K(p)\rangle=f_{0}\left(q^{2}\right) \frac{M_{K}^{2}-M_{\pi}^{2}}{q^{2}} q_{\mu}+f_{+}\left(q^{2}\right)\left[\left(p+p^{\prime}\right)_{\mu}-\frac{M_{K}^{2}-M_{\pi}^{2}}{q^{2}} q_{\mu}\right]
$$

chiral breakup: $f_{+}(0)=1+f_{2}+f_{4}+\ldots$, traditionally f_{2} from ChPT, $f_{4}+\ldots$ from models.
lattice flavor: $f_{+}(0)=1$ for $m_{u d}=m_{s}$ means that $\Delta f_{+}(0)=f_{2}+f_{4}+\ldots$ is calculated with $\sim 20 \%$ precision.
lattice momenta: with periodic boundary conditions, available (spatial) momenta have the form $p=2 \pi / L$, with $L=2 \mathrm{fm}$ one has $|p|_{\min }=600 \mathrm{MeV}$.

- $\left|V_{\mathrm{us}}\right|$ from ratio f_{K} / f_{π} and Hardy-Towner

Experiment can determine $\left|V_{\mathrm{us}}\right| f_{K}$, lattice can determine f_{K}.
This works, but there is a better way [Marciano, PRL 93231803 (2004)]:

- $\left|V_{\text {ud }}\right|$ is known, from nuclear β-decays, with 0.03% precision [Hardy Towner].
- $\left|V_{\text {us }}\right|$ is much less precisely known, but can be linked to $\left|V_{\text {ud }}\right|$ via a relation involving f_{K} / f_{π}, with everything else known rather accurately:

$$
\left.\frac{\Gamma\left(K \rightarrow l \bar{\nu}_{l}\right)}{\Gamma\left(\pi \rightarrow l \bar{\nu}_{l}\right)}=\frac{\left|V_{\mathrm{us}}\right|^{2}}{\left|V_{\mathrm{ud}}\right|^{2}} f_{\pi}^{2} \frac{M}{\pi}_{2}^{M_{\pi}\left(1-m_{l}^{2} / M_{K}^{2}\right)^{2}} M_{\pi}\left(1-m_{l}^{2} / M_{\pi}^{2}\right)^{2} 21+\frac{\alpha}{\pi}\left(C_{K}-C_{\pi}\right)\right\}
$$

Plot from calculation by BMW-collaboration.
$\longrightarrow f_{K} / f_{\pi}$ has small cut-off effects; here $a^{2} / \mathrm{fm}^{2}=0.0042,0.0072,0.0156$.
$\Longrightarrow f_{K} / f_{\pi}=1.192(7)(6)$ at physical $m_{u d}$, in continuum, and infinite volume.

- Summary on $f_{+}(0)$ and f_{K} / f_{π}

FLAG-1 estimates: $f_{+}(0)=0.956(8)$ and $f_{K} / f_{\pi}=1.193(5)$
Artist's impression of forthcoming FLAG-2 compilation (ignore gray bands):

| | JLQCD 11
 RBC/UKQCD 10
 RBC/UKQCD 07 |
| :--- | :--- | :--- |
| our estimate for $\mathrm{N}_{\mathrm{f}}=2+1$ | |

- Implication on 1st-row CKM unitarity

$$
\begin{aligned}
\left|V_{\mathrm{ud}}\right|^{2}+\left|V_{\mathrm{us}}\right|^{2}+\left|V_{\mathrm{ub}}\right|^{2}=1 & {[\mathrm{SM}] } \\
\left|V_{\mathrm{us}}\right| f_{+}(0)=0.2163(5) & {[\exp , \text { FlavianetKaon } 10] } \\
\frac{\left|V_{\mathrm{us}}\right| f_{K}}{\left|V_{\mathrm{ud}}\right| f_{\pi}}=0.2758(5) & {[\text { exp, FlavianetKaon } 10] }
\end{aligned}
$$

$\longrightarrow 3$ relations for 4 unknowns, since $\left|V_{\mathrm{ub}}\right|=4.15(49) 10^{-3}$ [PDG 12] is known/tiny \longrightarrow determine any one of $\underbrace{\left|V_{\mathrm{ud}}\right|, \mid V_{\mathrm{us}}}_{\text {nucl/tau data }}, \underbrace{f_{+}(0), f_{K} / f_{\pi}}_{\text {lattice } \mathrm{QCD}}$ and get remaining three in SM

- drop unitary constraint, get (almost) model-independent test of BSM phys.
- compare to $\left|V_{\mathrm{ud}}\right|=0.97425(22)[\mathrm{HT}]$
- Disappearance of "new physics" from $f_{D_{s}}$

Red/Orange: running experimental average, based on CLEO-c, Babar, Belle. Gray: running lattice average, based on Fermilab/MILC, HPQCD, CP-PACS.

Kaon mixing: B_{K}, B_{BSM} and $K \rightarrow 2 \pi$ amplitude

Leading term $(d=6)$ in OPE is

$$
B_{K}=\frac{\left\langle\bar{K}^{0}\right| O_{V V+A A}\left|K^{0}\right\rangle}{\frac{8}{3}\left\langle\bar{K}^{0}\right| A_{\mu}|0\rangle\langle 0| A_{\mu}\left|K^{0}\right\rangle}=\frac{\left\langle\bar{K}^{0}\right| O_{V V+A A}\left|K^{0}\right\rangle}{\frac{8}{3} M_{K}^{2} f_{K}^{2}}
$$

and early estimates include $B_{K}=1$ ("VSA") and $B_{K}=3 / 4$ ("large N_{c} ").
Note: ϵ_{K} and hence B_{K} quantify amount of indirect (via mixing) CP violation.
Note: Direct (in decay) CP violation significantly smaller: $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=1.67(23) 10^{-3}$.

- Kaon mixing parameter B_{K}

Most recent computations:

$$
\begin{aligned}
B_{K}^{\mathrm{RGI}}= & 0.7727(81)(84)[\mathrm{BMW}-\mathrm{c}] \\
& 0.727(04)(38)[\mathrm{SWME}] \\
& 0.766(04)(21)[\mathrm{LV}] \\
& 0.758(11)(19)[\mathrm{RBC} / \mathrm{UKQCD}]
\end{aligned}
$$

Artist's impression of forthcoming FLAG-2 compilation (ignore gray bands):

- Kaon mixing parameter B_{BSM}

Analogous definition, but with $O_{V V-A A}^{\Delta S=2}$ and $O_{S S \mp P P}^{\Delta S=2}$ and $O_{T T}^{\Delta S=2}$ inside; relevant in BSM theories whose low-energy EFT has other than $V-A$ structure.

Two recent computations:
arXiv:1206.5737 RBC/UKQCD: O_{2-5} from $N_{f}=2+1$ overlap simulations arXiv:1207.1287 ETMC: O_{2-5} from $N_{f}=2$ twisted-mass simulations

Consequences for various BSM scenarios: arXiv:1207.3016, arXiv:1208.0534, ...

- First determination of $K \rightarrow(\pi \pi)_{I=2}$ amplitude

Blum et al [RBC/UKQCD], Phys.Rev.Lett. 108 (2012) 141601 [arXiv:1111.1699] Blum et al [RBC/UKQCD], arXiv:1206.5142

After the lattice has struggled for decades with soft-pion theorems, this is the first direct computation of the $K \rightarrow \pi \pi$ amplitude with $\Delta I=3 / 2$. They find: $\operatorname{Re} A_{2}=1.381(46)(258) 10^{-8} \mathrm{GeV}, \operatorname{Im} A_{2}=-6.54(46)(120) 10^{-13} \mathrm{GeV}$.
$\operatorname{Re} A_{2}$ is in good agreement with the experiment, whereas $\operatorname{Im} A_{2}$ was hitherto unknown. Within the SM their result for $\operatorname{Im} A_{2}$ can be combined with the experimental results for $\operatorname{Re} A_{0}, \operatorname{Re} A_{2}$ and $\epsilon^{\prime} / \epsilon$ to give $\operatorname{Im} A_{0} / \operatorname{Re} A_{0}=-1.61(28) 10^{-4}$.

Their result for $\operatorname{Im} A_{2}$ implies that the electroweak penguin contribution to $\epsilon^{\prime} / \epsilon$ is $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)_{\text {EWP }} 10^{4}=-6.25 \pm 0.44 \pm 1.19$.
Still, direct computation of $A_{0}\left(\Delta I=1 / 2, \epsilon^{\prime} / \epsilon\right)$ remains "holy grail" for LQCD ...

- Recent computations of $B \bar{B}$-mixing

	$\xi=1.268(63)$	arXiv:1205.7013	Fermilab/MILC
$f_{B_{s}} / f_{B_{d}}=1.15(12)$	$\xi=1.13(12)$	arXiv:1001.2023	RBC/UKQCD
$f_{B_{s}} / f_{B_{d}}=1.226(26)$	$\xi=1.258(33)$	arXiv:0902.1815	HPQCD

See also 1107.1441 [ETM], 1112.3051 [MILC], 1202.4914 [HPQCD] for $f_{B_{s}} / f_{B_{d}}$.

Unitarity fits with lattice input

Discussion at http://latticeaverages.org [Lunghi, Laiho, Van de Water]. Like FLAG, they beg the user to cite original papers (to which they provide links).

Algorithms and machines

Sparse iterative solvers

$$
D_{\mathrm{W}}(x, y)=\frac{1}{2} \sum_{\mu}\left\{\left(\gamma_{\mu}-I\right) U_{\mu}(x) \delta_{x+\hat{\mu}, y}-\left(\gamma_{\mu}+I\right) U_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x-\hat{\mu}, y}\right\}+\left(4+m_{0}\right) \delta_{x, y}
$$

Wilson:

overlap:

- D is $12 N \times 12 N$ complex sparse matrix, for $N=64^{3} \times 128$ this is $40210^{6} \times 40210^{6}$
- each line/column contains only $1+3 \cdot 2 \cdot 8=49$ non-zero entries
- inverse is full [non-sparse], example above would require $2.410^{6} \mathrm{~TB}$ of memory
- CG solver yields $D^{-1} \eta \simeq c_{0} \eta+c_{1} D \eta+\ldots+c_{n} D^{n} \eta$ with $n^{2} \propto \operatorname{cond}\left(D^{\dagger} D\right)=\frac{\lambda_{\max }}{\lambda_{\text {min }}}$

New CPU packing strategies

SMP versus SIMD:

JUQUEEN [IBM BG/Q] 06/2012-10/2012
processor type compute node racks, nodes, cores memory performance (double) power consumption network topology network bandwidth network latency

64-bit PowerPC A2 1.6 GHz (205 Gflops each)
16-way SMP processor (water cooled)
8, 8'192, 131'072
16 GB per node, aggregate 131 TB ... 1678/1380 Teraflops peak/Linpack ... $<100 \mathrm{~kW} /$ rack, aggregate 0.8 MW ...
5D torus among compute nodes (incl. global barriers)
40 Gigabyte/s
$2.5 \mu \mathrm{sec}$ (light travels 750 meters)

New GPU programming models

GPUs originally designed for tasks in computer graphics (e.g. rendering).

GPUs nowadays frequently used for OpenMPparallelizable scientific computations.

Hardware connection via PCI bus (overhead from data transfer before/after computation).

```
void transform_10000by10000grid(float in[10000][10000], float *out[10000] [10000]){
    for(int x=0; x<10000; x++){
        for(int y=0; y<10000; y++){
            *out[x][y] = do_something(in[x][y]); // local operation !!!
        }
    }
}
```

Popular programming languages: CUDA, OpenCL, ...
Issues of single (32bit) versus double (64bit) precision ...
Excellent price/performance ratio paid for by human work ...

Other topics

Beyond QCD: Large N_{c}, larger N_{f}, different representations

QCD with $N_{c} \rightarrow \infty$ and fixed $\lambda=g^{2} N_{c}$ gets much simpler [weakly coupled hadrons, OZI exact, chiral loops $\sim 1 / N$, axial anomaly $\sim 1 / N$]; lattice is almost unnecessary ;-)

$T_{c} / \sqrt{\sigma}$ for $N_{c} \rightarrow \infty$
Lucini, Rago, Rinaldi, 1202.6684

Anomalous mass dimension 2-index symm-representation, $N_{f}=2$
DeGrand, Shamir, Svetitsky, 1202.2675

QCD thermodynamics at $\mu=0$

Established: QCD with physical $m_{u d}, m_{s}$ at zero chemical potential (as relevant in early universe) shows crossover.

Different definitions of "transition temperature" T_{c} yield different values [$\left.P,\langle\bar{\psi} \psi\rangle, \ldots\right]$, but for one definition everyone should agree in the continuum.
Long standing discrepancy between WuppertalBudapest (left) and HotQCD (right) now resolved.

QCD thermodynamics at $\mu>0$

At non-zero baryon density (equivalent: chemical potential $\mu \neq 0$) the fermion determinant becomes complex, which creates a major difficulty to the concept of importance sampling.

A clear establishment of a second-order endpoint would be a major leap forward.

In QCD many approaches to solve the sign problem have been tried:

- absorb phase in observable [ancient]
- two-parameter reweighting from $\mu=0$ [Fodor Katz]
- work at imaginary μ and continue [Philipsen deForcrand]
- compute Taylor coefficients at $\mu=0$

In QCD-inspired models many tricks/reformulations become possible.

Hadronic contributions to $g-2$ of the muon

Hadronic contributions to vacuum polarization provide one of the major sources of systematic uncertainty in the computation of $a_{\mu}=(g-2)_{\mu}$. Can the lattice help ?

$$
a_{\ell}^{\mathrm{HVP}}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right) \bar{\Pi}\left(Q^{2}\right)
$$

with known f and $\bar{\Pi}\left(Q^{2}\right)=\Pi\left(Q^{2}\right)-\Pi(0)$ and $\Pi_{\mu \nu}(q)=\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right)$ can be computed as the Fourier transformed 2-point function of the electromagnetic current.

Recent computations include: Feng et al, Phys.Rev.Lett. 107 (2011) 081802 [arXiv:1103.4818]
Della Morte et al, JHEP 1203 (2012) 055 [arXiv:1112.2894]
Kerrane et al, Phys.Rev. D85 (2012) 074504 [arXiv:1107.1497]

QCD with isospin splitting and/or electromagnetism

In standard $N_{f}=2+1$ lattice studies two sources of isospin breaking are ignored (updown mass difference, electromagnetic). Since they are both small, it would appear reasonable to include both of them a posteriori, by reweighting the configurations.

PACS-CS has long experience with reweighting in the quark mass; they used reweighting in $m_{u d}$ to shift M_{π} from 156 MeV to 135 MeV .

In arXiv:1205.2961 they extend this approach to account for QED effects and the up-down quark mass difference. They find $M_{K^{0}}>M_{K}^{ \pm}$.

Pioneering publication for QCD+QED on the lattice is Duncan et al, Phys. Rev. Lett. 76 (1996) 3894-3897 [hep-lat/9602005].
Continuation by RBC/UKQCD Phys.Rev. D76 (2007), Phys.Rev. D82 (2010) 094508.
Still, there remain issues relating to finite-volume corrections, see e.g. Hayakawa Uno, Prog.Theor.Phys. 120 (2008) 413 and Portelli et al, PoS LATTICE2011 (2011) 136.

Outlook: $N_{f}=1+1+1+1$ simulations with electromagnetism

- 2002-20??:
$N_{f}=2+1$ QCD requires 3 polished input values [e.g. $M_{\pi}, M_{K}, M_{\Omega}$ in theory with $m_{u}, m_{d} \rightarrow\left(m_{u}+m_{d}\right) / 2$ and $e \rightarrow 0$]
\longrightarrow analysis suggests $M_{\pi}=134.8(3) \mathrm{MeV}, M_{K}=494.2(5) \mathrm{MeV}$ [see FLAG report]
- 2010-????:
$N_{f}=2+1+1$ QCD requires 4 polished input values [ditto and $M_{D_{s}}$ in theory with $m_{u}, m_{d} \rightarrow\left(m_{u}+m_{d}\right) / 2$ and $\left.e \rightarrow 0\right]$
\longrightarrow charm unquenched, but no conceptual change on isospin issue
- 2014-????:
$N_{f}=1+1+1+1$ QCD requires 5 input variables [e.g. $M_{\pi^{ \pm}}, M_{K^{ \pm}}, M_{K^{0}}, M_{D_{s}}, M_{\Omega}$]
\longrightarrow requires disconnected contribution to flavor-singlet quantities
\longrightarrow analysis of $\pi^{0}-\eta-\eta^{\prime}-\gamma$ mixing mandatory to extract physical masses
\longrightarrow QED and QCD renormalization intertwined (m_{s} / m_{d} is RGI, m_{u} / m_{d} is not)
\longrightarrow final word on $m_{u} \stackrel{?}{=} 0$ [in QCD+QED] will be possible

List of topics not covered

- improved actions, matching with perturbation theory
- chiral symmetry in vector-like gauge theories
- chiral gauge theories and CP violation
- chiral symmetry and chemical potential
- sign problem at non-zero chemical potential
- supersymmetry on the lattice
- staggered fourth-root trick
- non-standard staggered mass terms
- large autocorrelation times
- new algorithmic developments
- new machine concepts

Summary

1. Lattice QCD is an intermediate step in the definition of QCD
2. Spectroscopy of stable hadrons with $N_{f}=2+1$ is a mature field
3. Spectroscopy of mixing/unstable states is developing fast
4. Lattice yields vital input in CKM analysis and BSM bounds
5. FLAG/latticeaverages ask you to cite original papers !!!
6. Rapid progress on nuclear issues (strangeness, scattering, ...)
7. Rapid progress on QCD thermodynamics ($\mu=0$ and $\mu>0$)

[^0]: * Value obtained by combining the HPQCD 10 result for m_{s} with the MILC 09 result for $m_{s} / m_{u d}$.
 + The fermion action used is tree-level improved.
 ${ }^{\dagger}$ The calculation includes quenched e.m. effects.

