SEU tolerant latches design for the ATLAS pixel readout chip

Mohsine Menouni, Marseille group

On behalf of the ATLAS PIXEL Upgrade FE-I4 collaboration

TWEPP 2012

Oxford-21 September 2012

Outline

Introduction

- Motivations, Specifications and Description of the FEI4 chip
- □ The present design for the insertion of B-Layer
 - Memory Cell structure used in the FE-I4 chip
 - Pixel configuration
 - Chip configuration
 - Experimental test setup and main results
- □ The future design
 - Motivations of using the 65 nm process
 - Chip Prototype for ATLAS pixel
 - Organisation of the Configuration Memory
 - SEU test results
 - Dose effects
- Conclusion and perspectives

Motivations

- □ Two applications are foreseen for FE-I4 chip
- □ Insertion of the B-Layer (2013)
 - Small radius : 3.3 cm
 - Increase tracking performance
 - The FE-I4 designed to respect
 - Higher hit occupancy per pixel
 - Higher level of radiations
- Phase 1 or Phase 2
 - New pixel detector planned
 - 2 removable internal layers at radii of about 3.3 10 cm
 - 2-3 fixed outer layers at radii of about 15 25 cm
 - FE-I4 fits requirements for outer layers in terms of hit occupancy and radiation hardness
 - A new development is required for the inner layers

ATLAS Pixel Detector

- 3 barrel layers / 3 end-caps
- end-cap: z± 49.5 / 58 / 65 cm
- barrel: r~ 5.0 / 8.8 / 12.2 cm

September 21 - 2012

FE-I4 chip overview

- The FE-I4B chip is the production version for IBL installation
 - Designed in a 130 nm CMOS process
 - Dimensions : 20 mm x 19 mm
 - Active zone : ~ 90 % of the total area
 - Respects all the specifications
 - 96 wafers ordered in 2012
- The FE-I4 pixel array is organized in Double Columns (DC)
 - Double Column is divided into 2 × 2 pixel regions
 - 1 région : 2×2 pixel
 - Radiation tolerance > 200 Mrad
 - ~27 000 pixels where each pixel uses 13 bits for configuration

Dice Latch description

- Configuration logic in the FE-I4 is based on the DICE latch
- The DICE latch uses the conventional cross coupled inverter latch structure
- □ If we assume a positive upset pulse on X2
 - MP3 is turns OFF avoiding the propagation of this perturbation to the node X3 and X4
 - But, If the perturbation happens on the 2 sensitive nodes storing the same state, the immunity is lost and the Dice latch is upset.
- Spatial separation for the drain diffusions of MN1 and MN3
- Contacted guard ring and nwell separation for pmos MP1 and MP3 for isolation
- Enclosed layout to minimize the sensitive nodes area

Latches pixel implementation

SEU Experimental Test Set up

- □ Irradiation facilities : IRRAD3 beam line of the CERN Proton Synchrotron (PS)
- Beam of 24 GeV protons with a spot area around 1 cm²
- □ 1 to 4 spills per Cycle (CPS)
- □ The duration of each spill is 400 ms
- Typical fluency : 5E10 p/cm²/spill to 1.5E11p/cm²/spill
- Reach a fluency of 1 3 E13 p/cm2 per hour
- Data Acquisition synchronized with Spill signal or CPS

September 21 - 2012

de Physique

Analog Scan and cross section

- SEU Measurements were did on the FE-I4A chip where 2 versions of the DICE were implemented
- □ Conditions to obtain this map :
 - Enable bit is the only config bit concerned for the test
 - All pixels disabled (enable=0) before the spill
 - An upset from 0 to 1 of the enable bit will give the map corresponding to the response of the input injection charge (200 events per input)
- □ In this configuration, we can directly see:
 - Lower SEU rate in version 2 columns
- Pixel latches with optimized layout (Version 2) are 30 times more resistant to SEU than the version 1
- The version 2 of the pixel latch configuration was adopted in the whole FE-I4B chip

	Rate/spill	Cross-section
Version 1	3.0	31 10 ⁻¹⁵ cm ²
Version 2	0.1	1.1 10 ⁻¹⁵ cm ²

Global configuration memory

de Physique des Particule

le Marseille

Classification of Errors

- During FE-I4A irradiation tests, the typical rate of errors is 6.8 % (102/1480 spills)
 - So higher than predicted
- Most of the errors are not related to the TRL SEU
- Error classification using Service Record Data (SR)
 - Normal GR SEU
 - PRD like resets where all GR bits are zero
 - Write glitch from Decoder
 - Internal glitch in the Global Memory
- PRD-like GR errors is the biggest effect on the FE-I4A
- □ In the FE-I4B :
- □ The PRD threshold increased from 1001 to 1111
- A third detector added on the chip and separate the location of the 3 PRD detectors
- The load path triplicated inside the memory bloc to reduce the sensitivity to glitches

	TRL SEU	PRD Error	Wr glitch decoder	Internal glitch
Number of errors	2	79	11	10
Rate	0.1 %	5.3 %	0.7 %	0.7 %

- No PRD-like GR errors
- □ Still have errors generated by glitches : 4 errors

September 21 - 2012

Outline

Introduction

- Motivations, Specifications and Description of the FEI4 chip
- □ The present design for the insertion of B-Layer
 - Memory Cell structure used in the FE-I4 chip
 - Pixel configuration
 - Chip configuration
 - Experimental test setup and main results
- □ The future design
 - Motivations of using the 65 nm process
 - Chip Prototype for ATLAS pixel
 - Organisation of Configuration Memory
 - SEU test results
 - Dose effects
- Conclusion and perspectives

Motivations of using the 65 nm process

- □ For the HL-LHC, a new pixel detector is planned
 - 2 removable internal layers are planned (3.5 cm 10 cm)
 - Reduction of the pixel size for the inner layers
 - The event rate is high and the FE-I4 architecture is not adapted (can not be processed by the FE-I4 chip)
- □ A new design is required : FE-I5

de Physique des Particule

- R&D : CMOS 65 nm, 3D, Monolithic (HVCMOS, HRCMOS)
- CMOS 65 nm is considered as the base line solution
- A prototype has been designed to explore advanced CMOS processes and to evaluate radiation hardness and SEU tolerance

ATPIX65A: Atlas Pixel prototype array

□ ATPIX65 : small array of pixels 16x32 designed at Berkeley using 65 nm CMOS process

- Pixel area : 25 μm x 125 μm
- Pixel y pitch is 25 µm and 50 µm bump y pitch

Configuration : 8 Triple Redundant Latch (TRL) with error correction September 21 - 2012 TWEPP 2012, Oxford University, UK

Configuration logic architecture

- Data loaded and readback with shift register (SR).
- 16 columns of 256 Configuration TRL and 256 DFF
- One column is validated at the same time
- TRL with error correction 12.2

de Physique des Particules

le Marseille

Standard cells from ARM library

September 21 - 2012

sel

Datain

SEU test results

- SEU rate is computed for the DFF cell and for the TRL
- Cross section :
 - σ_{TRL} = 2.6 E-16 cm²
 - σ_{DFF} = 4.5 E-14 cm²

• $\frac{\sigma_{\text{DFF}}}{\sigma_{\text{TRL}}} = 170$ September 21 – 2012

	size	area	cross section σ (cm ² /bit)		
			All	0 to 1	1 to 0
TRL for configuration	12.5µm × 4.3µm	54 µm²	2.6 E-16	2.64 E-16	2.55 E-16
DFF for Shift register	6µm × 2.4µm	14.4 µm²	4.5 E-14	5.9 E-14	3.0 E-14

Dose effects

□ From a dose level of 260 Mrad :

- Systematic errors begin to appear for patterns "0000" or "1111"
- The effect increases with the dose and cover the half of the DFF cells at 640 MRad
- The effect persists even outside the beam
- After Annealing, the number of systematic errors decreases
 - The chip seems to go back to a normal behavior after 420 hours of annealing
- But, still have a lot of errors with the pattern "1010"
- A new chip is currently being tested to check if the results are repetitive

260 Mrad to 310 Mrad

390 Mrad to 420 Mrad

September 21 - 2012

Dose effects on the 65 nm device

- Measurement of proton radiation effects on a 65nm transistors
 - nMos low Vt transistor with W/L=22µm/100nm
 - We need to do this measurement on a minimum area device
 - Understand the effect for the dose level higher than 200 Mrad
- The sub-threshold slope does not change significantly at any transistor bias
- The leakage current increases by 1 order of magnitude for a total dose of 180 Mrad
- The leakage current seems to reach a saturation value for high dose levels
- Compatible with irradiation results of the Analog FE electronic
 - Los Alamos with 800 MeV protons
 - No damage observed to 600 Mrad
- Is the dose effect on the configuration memories related to a minimal size transistor used in digital cells from ARM library ?

- □ The FE-I4B chip respects requirements in term of SEU for local and global configuration memories
- □ The FE-I4B chip is now used for the IBL production
- □ For the future pixel design : 65 nm process is considered as the base line solution
- A prototype chip with a small array of pixels have been designed and successfully tested
- □ In this chip, configuration memories are based on the triple redundancy
- Designed with cells from the TSMC-ARM library
- Very good results in term of cross section and tolerance to SEU
- □ For a high level of dose (250 Mrad), systematic errors are introduced
- □ Irradiation tests in progress to check for the repeatability
- □ A new design with different structures of configuration memories in now under development
- □ Do we need to design a custom digital standard cells library ?

FE-I4 Collaboration

□ Participating institutes :

- Bonn: David Arutinov, Malte Backhaus, Marlon Barbero, Tomasz Hemperek, Laura Gonella, Michael Karagounis, Hans Krueger, Andre Kruth
- Genova : Roberto Beccherle, Giovanni Darbo
- LBNL : Lea Caminada, Sourabh Dube, Julien Fleury (LAL), Dario Gnani, Maurice Garcia-Sciveres, Frank Jensen, Yunpeng Lu (IHEP), Abderrezak Mekkaoui
- CPPM: Patrick Breugnon, Denis Fougeron, Fabrice Gensolen, Mohsine Menouni, Alexandre Rozanov
- NiKHEF: Vladimir Gromov, Ruud Kluit, Jan David Schipper, Vladimir Zivkovic

Error rate estimation for pixel configuration

- □ The SEE fluency is calculated by summing the rates of charged particles (hadrons) and neutrons with kinetic energies > 20MeV.
- the estimated SEE rate based on simulations for the LHC, is 0.23 E15 particle/cm²/year for the pixel B-layer
- □ For the B-Layer upgrade, the luminosity is 3 times higher than at the start of the LHC. If we consider 1 year =1E7 sec and we apply a safety factor, the SEE rate is estimated to 3.0 E8 part/cm2.s

	Number of latches per FEI4 chip	Latch cross section (cm ² /bit)	Mean time between 2 errors for one FEI chip (sec)
Pixel configuration	675840	3.0E-16	16 sec
Global registers	500	3.0E-16	22000 sec (6 hours)

Layouts implemented in the chip SEU2

Cross section (cm2)

	Latch type	area .	Cross section cm ² /bit			
			1->0	0->1	1->0 and 0->1 (*)	
	Latch 5	48 µm²	(1.5 ± 0.1).10 ⁻¹⁵	$(2.2 \pm 0.3).10^{-16}$	(5.9 ± 0.5).10 ⁻¹⁶	
	Latch 5.2	48 µm²	(3.4 ± 0.6).10 ⁻¹⁶	(4.2 ± 0.4).10 ⁻¹⁶	$(3.6 \pm 0.5).10^{-16}$	
	Latch 5.3	48 µm²	(3.0 ± 0.6).10 ⁻¹⁶	(3.3 ± 0.3)10 ⁻¹⁶	(2.4 ± 0.5).10 ⁻¹⁶	

Measurements made in 2008 for the chip SEU2

- Different layout versions were implemented in the SEU2 chip
 - Same schematic but different layout
- The latch 5.3 is 2.5 times tolerant to SEU than the latch 5
- This result shows the importance of separating sensitive nodes

de Physique des Particules

de Marseille