Development and Implementation of Optimal Filtering in a Virtex FPGA for the Upgrade of the ATLAS LAr Calorimeter Readout

Steffen Stärz, on behalf of the ATLAS Liquid Argon Calorimeter Group

Bundesministerium für Bildung und Forschung

TWEPP 2012, September 18, 2012

Overview

Motivation

- 2 Signal Filter Requirements
- O Different Filter solutions
- 4 FPGA implementations
- 5 Summary and Outlook

Motivation

Motivation

- Upgrade to HL-LHC in two phases ($\approx 2015, \approx 2020$) • $L = 10^{34} \times (1 \rightarrow 2-3 \rightarrow 5-7) \text{ cm}^{-2} \text{s}^{-1}$
- $\Rightarrow\,$ new readout electronics for ATLAS Liquid Argon Calorimeters required
 - \Rightarrow provide finer granularity to Level-1 trigger system
 - 4 individual calorimeter layers, finer segmentation
 - ⇒ improve resolution for trigger objects like electrons, photons, jets, missing transverse and total energy
 - \Rightarrow reduce trigger rates from background

The Challenge

- fully digitized readout (Super Cells)
- $\bullet~\approx$ 60000 trigger readout channels
- \bullet 40 $\rm MHz$ sampling rate

Motivation

Proposed readout architecture for LAr Barrel and Endcap

Red: new readout modules for Phase-I; other colours: current readout modules

Signal Filter Requirements

Filter Requirements in Upgrade Scenario

- noise suppression
- correction for out-of-time pile-up
- identification of the correct bunch crossing (BC)
- continuous ADC samples at 40 MHz
- tight latency budget (6 BCs pprox 150ns)

Possible filters

- adaptive filters: adjust transfer function on the fly
 - \Rightarrow reference signal required, but relatively long transition time
 - ⇒ massive matrix multiplications
 - $\rightarrow\,$ bad for FPGA resources
- (non adaptive) FIR filters: calculate coefficients in beforehand
 - $\Rightarrow\,$ reference signal required, but stable, fix response delay
 - \Rightarrow multiply-add structures
 - $\rightarrow\,$ good for FPGA resources

• something in between: IIR filter, Heuristic filter, Wiener filter, ...

Filter simulation input data generation

- simulated flat signal energy spectrum: 0 - 80 GeV
- pile-up spectrum: 0 14 GeV (power-law parametrization [1])
- × pulse shapes from detector simulation (LAr Super Cells, Barrel, 2nd Layer)
- + noise RMS: 200 MeV [2]
- \Rightarrow sequence of 1M BCs

Signal energy sequence

[1] The CMS Collaboration: Measurement of charged hadron spectra in proton-proton collisions at $\sqrt{s}=$ 14 ${
m TeV}$

[2] Georges Aad et al: Performance of the electronic readout of the ATLAS liquid argon calorimeters

Optimal Filtering

Filter simulation results

simulated input energy spectrum:

possible filter results:

5-staged FIR filter with shape detection

- similar to current implementation in ATLAS LAr Read-Out Driver
- $E = \sum_{i=1}^{n} a_i \cdot (S_i + Ped_i)$
- shape detection: $E \ge 0$ and at least 4 samples compatible with pulse shape g_i : $|S_i g_i E| < \frac{1}{2^N} |g_i E|$ (easy to implement in FPGA)

• pile-up enlarges energy spread, poor signal detection efficiency

FIR filter with shape detection and forward correction

• if signal found \rightarrow correct subsequent samples for known pulse shape: $S_i \rightarrow S_i + \sum_{k,j} g_{k,j} E_k$

• more precise, improved detection efficiency

3-stage FIR: peak detection (derivative approach)

- derivative approach: $E = \frac{w_1}{2} \cdot (S_{i+1} S_i) \frac{w_2}{2} \cdot (S_i S_{i-1})$
- weights depend on pulse shape

- less precise than FIR with shape detection
- fakes only signals at small amplitudes
- almost no signal losses

Different Filter solutions

Wiener filter (FIR) with shape correction approach

• Final filter response (red) after \approx 6 BCs (picture shows simulation)

Different Filter solutions

Wiener filter (FIR) with shape correction approach

• combines Wiener filter with internal trigger for shape correction (2 small FIRs and shift registers)

- excellent precision
- no fakes
- almost no losses

Other filters investigated

IIR Filter - discarded

• unstable in filter response (accumulating offset)

Inverse FIR Filter

 \bullet very sensitive to pulse shape \rightarrow second tiny peak (2%) after 9 BCs

Heuristic Filter

• pile-up suppression by correcting for the history of up to 8 events in 25 BCs

Implementation

• Xilinx Virtex-5, 6 and 7 (ML505, ML605, VC707)

Implementation framework

- Interface with Gigabit Ethernet (UDP/IP)
- Input data buffered in RAM
- Online updatable filter coefficients (SRLC32E)

Resource utilization

Resources for 1 filter unit

filter	DSPs	Slice LUTs	latency (clk/BCs)	max. channels
FIR (shape)	10	pprox 400	42/5.25	8*280
peak FIR	3	ongoing	28/3.5	8*933
Wiener	16	pprox 430	46/5.75	8*175

• All filters use 8-fold multiplexing (40 MHz LHC vs. 320 MHz FPGA)

- Channel estimates for Xilinx VC707 Evaluation board (VX485T-2 with 2800 DSPs and 75900 Slices)
- ATLAS LAr requirement: 1280 channels per FPGA \rightarrow fulfilled

Summary and Outlook

Filter summary

- Wiener filter with shape correction shows best performance
- FPGA resource utilization varies a lot for different filters, but all implementations fulfill ATLAS LAr requirements
- Latency budget met by all filters by design

Future tasks

- Simulation with different physics scenarios
- Simulation of different detector regions
- Pulse saturation effects are under study

Thanks for your attention! Your feedback is welcome at any time! Questions?

Proposed readout architecture for LAr Barrel and Endcap

Black: current readout modules; Red: new readout modules for Phase-I

The Wiener filter design in more detail

Steffen Stärz (IKTP TU Dresden)

TWEPP 2012 20 / 17

The Wiener filter phase dependence

• quality plot: product of precision, inverse fake efficiency and signal detection efficiency

Steffen Stärz (IKTP TU Dresden)

Coefficients module

Updatable coefficients

- requirements:
 - instant readout
 - rewritable entries
 - ightarrow updatable LUT
- solution:
 - SRLC32E module
- side-effect:
 - 32 addresses minimum
 - bitwise data input
 - changing bit order
 - ightarrow offline calculation

Saturation effects

Some thoughts

- \bullet Saturation: pulse changes shape \rightarrow filters fail or suffer in performance
- Important for trigger: still identify correct BC
- energy reconstruction becomes less important in saturated region
- currently discussed: combination of linear and non-linear amplification region

- The CMS Collaboration: Measurement of charged hadron spectra in proton-proton collisions at $\sqrt{s} = 14 \text{TeV}$
- Georges Aad et al.: Performance of the electronic readout of the ATLAS liquid argon calorimeters