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Hardware-based pattern recognition for fast triggering
on particle tracks has been successfully used in high-

energy physics experiments for some time[1]. The
CDF Silicon Vertex Trigger (SVT) at the Fermilab
Tevatron is an excellent example. The method used
there, developed in the 1990’s, is based on

algorithms that use a massively parallel associative
memory architecture to identify patterns efficiently at

high speed. However, due to much higher occupancy
and event rates at the LHC, and the fact that the LHC
detectors have a much larger number of channels in

their tracking detectors, there is an enormous
challenge in implementing fast pattern recognition for

The Conventional Method

Introduction

The Associative Memory approach is
to use CAMs to match and Majority

CAM Match Lines

Logic to associate hits from
different detector layers for track
candidates. The essence of VIPRAM
is to divide this approach up into
different tiers, maximizing pattern
density while minimizing critical
lengths and parasitics. To
demonstrate the feasibility of this
approach the first goal is to develop

The VIPRAM Method
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* This initial VIPRAM implementation is a

division of labor that places all Control Cells
(Majority Logic) in one “top” Control Tier and
the CAM cells in individual Tiers corresponding

to each detector layer.

e The resulting pattern “tube”, shown to the left
and highlighted in blue, contains all circuitry

necessary to select one candidate track.

* The Stored Address Match Lines, the longest

lines in the conventional method, are

implemented vertically and are therefore now

considerably shorter. As these lines are

repeated throughout the chip, this can have a

-
a track trigger, requiring about three orders of and rigorously test the two basic 3D _;’;5;,\%_ significant impact on performance.
magnitude more associative memory patterns than building blocks - the CAM Cell and :!;‘f’* * The vertical integration provides a flexibility in
what was used in the original CDF SVT. Approaches to the Majority Logic Cell. The VIPRAM i layout optimization of the building blocks, and
this goal in simple 2D VLSI are limited. A new concept architecture allows us to test the 3D LA therefore chip performance.
to use emerging 3D technology to achieve this goal building blocks in a simple, low-cost * The pattern density directly depends on the
has been proposed [2]. 2D prototype. cross-sectional area of the tube.
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3D Building Blocks

2D Approximation of 3D Diagonal Vias
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The first prototype of the new layouts will be a 2D
implementation of a simple 4-CAM Layer Tube
using the actual 3D building blocks. The 3D vias
must be approximated in higher levels of metal
and some horizontal routing space is necessary
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Architectural Flexibility

The VIPRAM architecture is intrinsically
open and flexible. For example, a simple
logic modification to the Majority Logic
allows a combination of two “tubes” to
function either as two 4-layer pattern
cells or one S-layer pattern cell.
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Summary

The associative memory approach to track finding and the PRAM devices that implement it
are well suited to modern 3D integration. The algorithm is easily divisible into logical
partitions that are physically separable from one another due to the simplicity and

layers in the final design.

to 3D integration will also evolve. For the moment, it makes sense to remain at a
reasonable technology node such as 130nm rather than pursue a more aggressive node
such as 65nm. This will allow for relatively inexpensive prototyping. When all of the

QOut 8 Layers

or
Out 4 Layers A

technology node will be clearer.
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