

A DC-DC Conversion Powering Scheme for the CMS Phase-1 Pixel Upgrade

Lutz Feld, Martin Fleck, Marcel Friedrichs, Richard Hensch, Waclaw Karpinski, <u>Katja Klein</u>, Jan Sammet, Michael Wlochal *1. Physikalisches Institut B, RWTH Aachen University*

Topical Workshop on Electronics for Particle Physics Oxford, September 20th, 2012

The Phase-1 Pixel Upgrade

• During LHC Phase 1 the luminosity will be doubled, up to ~ $2 \cdot 10^{34}$ cm⁻²s⁻¹

\rightarrow Exchange of CMS pixel detector in shutdown 2016/2017

- Optimized readout chip (ROC)
- Less material, e.g. through CO₂ cooling
- Factor of 1.9 more channels \rightarrow factor 1.9 higher power consumption

• Existing services must be re-used

 \rightarrow Power losses in cable channels increase by factor ~ 4 \rightarrow heat load too high

\rightarrow will move to a DC-DC conversion powering scheme

DC-DC buck converters

- Vin = 10V
- Vout = 2.4 or 3.0V (analog and digital pixel module circuitry)
- Conversion ratio of 3-4
 → power losses reduced by factor ~ 10
- Located on supply tube & service cylinder
- Cooled from CO₂ pipes
- In total 1184 DC-DC converters

2.2m distance to front-end → material and EMI less critical than in other applications

Katja Klein

AC_PIX_V8 DC-DC Converters

Custom rad.-tolerant tolerant buck converters, optimized for our application

 $V_{out} = 3.0V \text{ or } 2.4V$ Switching frequency $f_s = 1.5MHz$ 2-layer PCB Toroidal plastic core inductor L = 450nH **Pi-filters** at in- and output

ASIC: AMIS4 by CERN-PH-ESE (St. Michelis, F. Faccio) Latest available prototype in radiation-tolerant AMIS I3T80 0.35µm CMOS (ON Semiconductor) [2012 JINST 7 C01072]

Why is a shield required?

- \checkmark to shield the magnetic emissions
- \checkmark as cooling contact for the coil
- ✓ to segregate "noisy" parts from output filters

\rightarrow 60 DC-DC converters have been built

AC_PIX_V8 A: 2.8cm x 1.6cm; ~ 2.0g

Aluminium shield

Power Efficiency

- Mean efficiency and standard deviation based on 12 converters
- Very good efficiency 80% or higher, except for very low output currents
- Very uniform SD below or around 0.5%, except for very low output currents (1%)

Efficiency vs. f_s and Temperature

- Switching frequency adjusted with external potentiometer
- Efficiency is maximal for $f_s \approx 1.5 MHz$
 - Higher conduction losses for lower f_s
 - \bullet Higher switching and driving losses for higher $\rm f_s$

- Previous measurements with cooling at +20°C
- Efficiency rises with decreasing temperature (lower Ohmic losses)
- About 0.05% (abs.) increase per K
- Increase when moving to pixel operating temperatures of -20°C: < 2% (abs.)

Shielding

- Space constraints \rightarrow tricky shape!
- 0.3mm plastic galvanically coated with 30µm Cu + electro-less 1µm Sn
- Two methods are considered for the body:
 - **Rapid prototyping**: fast and flexible → good for prototyping (and mass production?)
 - Thin layers are difficult (0.3mm still not quite achieved)
 - Radiation hardness to be investigated
 - Price ~ 10 Euro per piece (quote for 3000 pieces)
 - Injection moulding: mould is expensive → mass production, when shape is fixed
 - Price ~ 5 Euro per piece (quote for 3000 pieces)

Protoypes made with rapid prototyping

Shielding

Strong reduction of magnetic emissions and Common Mode output noise:

Katja Klein

DC-DC conversion powering for CMS Pixel Upgrade

10

- Inefficiency of 20% \rightarrow converters need to be cooled
- Hot spots: chip and coil
 - Chip cooled from back-side
 - Shield acts as cooling contact for coil
- Measurements with thermistors on chip and inside coil (difficult)
- Shield reduces temperature of inductor by up to ~ 20K

• No thermal problem, even for lout = 4A

The DC-DC Bus Board

- Input and output voltages, control signals and bias voltages
- 8 Cu layers a 70µm
- Protoype for 24 converters studied
- Voltage drops to be well understood (no remote sensing!)
 - Reasonable agreement with calculation
 - No degradation after 120 thermal cycles between -10°C and +40°C under load

DC-DC converter position

Katja Klein

CO₂ Cold Test with Bus Board

- Two-phase CO₂ cooling system
- Tests performed with fully equipped bus board and lab CO₂ cooling system, operated at -20°C
- Pipes are thin: 1.7/2.0 mm in lab; 1.8/2.2mm in CMS
- A programmable load can be applied to each converter

Aluminium cooling bridges

CO₂ Cold Test with Bus Board

- ΔT between pipe and cooling bridge about 15K \rightarrow optimization needed
- ΔT betw. coil/chip of shielded converter & cooling bridge about 20K \rightarrow as expected

Thermal Cycling

- Different temperatures in CMS: CO₂ cold/warm; power on/off
 - \checkmark check if convs. work between -30°C and +35°C block temp.
 - \checkmark impose thermal stress (accelerated aging)
- Cold box for 16 DC-DC converters
- 8 converters exposed to 15 cycles \rightarrow still working fine

System Tests with Pixel Modules

Dig. current

- Check for possible degradation of module performance due to DC-DC converters
- 2 (present-type) pixel modules powered from 1 converter pair
- In total 8 pairs of DC-DC converters on bus board prototype

- Noise of each pixel is extracted as width of its "S-curve"
- Comparison betw. conventional powering with CAEN PS and DC-DC powering
 - No difference observed for constant load
 - For dynamic load changes, noise with conv. powering increases by 19 and 15%
 - DC-DC converters increase robustness, due to local regulation and filtering

Load from pixel modules only Constant nominal load on all converters

Load changes as expected from LHC orbit gaps → drop from 2A to 0A for 3µs every 89µs Inverted orbit gaps (few filled bunches in LHC)

- 24 DC-DC converters on bus board
- Two pixel modules powered from one converter pair
- 3A load on all analog converters \rightarrow 35A

→ No increase of pixel noise wrt 8 DC-DC converters

• Depending on their coupling, oscillators can lock in frequency and phase

- Described by the Kuramoto model
- Many examples in nature: e.g. mechanically coupled metronoms
- Coupling of DC-DC converters on common power line might increase input noise

Idea: try to see/induce coupling, and try to change f_s through disturbations

- $\bullet\ f_s$ measured with pick-up probe and spectrum analyzer
- relative phase measured with oscilloscope

DC-DC conversion powering for CMS Pixel Upgrade

20

Synchronisation of DC-DC Converters

- Two converters operated
 - f_s of one converter adjustable with poti
 - Check effect on the other converter

\rightarrow no f_s shift or phase locking observed

- External disturbation
 - conductive: on input cable (740mV_{pp})
 - radiative: with external coil (~10mW)
 - → no significant changes in the frequency distribution of converter observed

- DC-DC conversion will be used in the CMS Phase-1 pixel upgrade
- DC-DC buck converters based on AMIS4 ASIC extensively tested
 - ✓ Efficieny uniform and high around 80%
 - ✓ System tests with pixel modules show no degradation
- First system tests with a fully equipped bus board were successfull
- Started to investigate industrialization options and to prepare QA set-ups
- Move to AMIS5 ASIC in Autumn
- Mass production in 2013/2014

Back-up Slides

Specification of DC-DC Converters

Input voltage	9-10 V
Output voltage	2.4-2.5 V or 3.0-3.3 V
Conversion ratio	3-4
Maximum output current	3-4 A
Efficiency	At least 75%, at nominal operating conditions
Maximal dimensions	3.0 cm x 2.0 cm x 1.4 cm
Radiation tolerance (500 fb $^{-1}$)	100 kGy and $2 \times 10^{14} n_{eq}/\text{cm}^2$
Protection features	Over-temperature, over-current and under-voltage protection
Control features	Remote disabling and status information
Special requirements	Stable operation under large and fast load variations
Total number required	1184
Total number including spares	1800

Table 7.3: Specifications for DC-DC converters for the CMS pixel upgrade.

Power Efficiency

- Mean efficiency is shown based on 12 and 9 converters, respectively
- Very good efficiency 80% or higher, except for very low output currents

Uniformity of Power Efficiency

- Standard deviation is shown based on 12 and 9 converters, respectively
- Very uniform with SD below or around 0.5%, except for very low output currents (1%)

Coupling of DC-DC Converters

- Two converters operated: "C1" and "C2"
 - C1: f_s adjustable with potentiometer
 - Check effect on C2 = DUT

\rightarrow no f_s shift or phase locking observed

- However, under special, unrealistic circumstances converters do couple
 - C1 with poti, C2 with long inductor leads
 - $\rm f_s$ of C1 slightly detuned \rightarrow jumps to $\rm f_s$ of C2
 - Phase-locking observed as well

Interference induced on input cable (740mV_{pp}) and with external coil (~10mW) \rightarrow no significant changes in the frequency distribution (5000 measurements) of DUT

