Low-power High-Speed CMOS I/Os: Design Challenges and Solutions

Thomas Toifl

TWEPP 2012
Sept. 20th, 2012
I/O Link Technology group @ IBM ZRL

What we do
- I/O PHY circuit design
- backplane and chip-to-chip (e.g. processor, memory)

Technical goals to meet
- Distance: 10-100cm
- Attenuation: 10-40dB
- Data rate: 3-40 Gbit/s
- Energy/bit: <10pJ/bit
- Chip area : 0.1 mm²
General research directions

Data rate (e.g. 28Gb/s)

Power efficiency (e.g. 5pJ/bit)

Distance (=allowable channel attenuation ~equalizer complexity

(e.g. 28Gbit @ 30dB channel attenuation measured at $f_{\text{baud}}/2$)

Side conditions: chip area, testability, standard compliance, reliability etc.
Outline

- Introduction
 - High-Speed I/Os in the wireline link space
 - Equalization techniques

- Low-power Transmitter
 - SST vs. CML driver
 - Ultra-low power TX → Avoid TX-FFE

- Low-power Receiver
 - Power-optimal amplification
 - Incomplete Settling / Integrating Buffer
 - Low-power DFE Architecture
 - Low-power clock generation

- Digital approaches
 - ADC
 - DFE implementations
 - Analog vs. Digital
High-speed I/Os compared with other wireline links

<table>
<thead>
<tr>
<th></th>
<th>High-speed serial (backplane or chip-to-chip)</th>
<th>Gbit Ethernet 1000Base-T 802.3ab</th>
<th>10Gbit Ethernet 10GBase-T 802.3an</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bidirectional</td>
<td>-</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Data rate/lane [Gbps]</td>
<td>3-20</td>
<td>2 * 0.25</td>
<td>2*2.5</td>
</tr>
<tr>
<td>Rate/channel BW (HSS=1)</td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Coding</td>
<td>NRZ</td>
<td>PAM-5 + Trellis</td>
<td>PAM-16 + LDPC</td>
</tr>
<tr>
<td>Equalization</td>
<td>≤5 tap FFE</td>
<td>12 tap FFE</td>
<td>16 tap THP</td>
</tr>
<tr>
<td></td>
<td>≤15 tap DFE</td>
<td>14 tap DFE</td>
<td></td>
</tr>
<tr>
<td>Echo canc</td>
<td>-</td>
<td>60 Taps</td>
<td>>200 Taps</td>
</tr>
<tr>
<td>X-talk canc</td>
<td>-</td>
<td>75 tap NEXT</td>
<td>NEXT+FEXT</td>
</tr>
<tr>
<td>Energy/bit</td>
<td>x1</td>
<td>x10</td>
<td>x50</td>
</tr>
</tbody>
</table>

Case #1 High-speed I/Os (up to now): Simple, analog, rather low-power

Case #2 Ethernet over copper: Digital (ADC) + lots of signal processing

→ **Goal:** More complex equalization at low power
I/O Standards Roadmaps versus Data Rate

- Current standards mostly in the 10-14Gb/s range
 - OIF CEI pushing aggressively to 25G, still in “early adoption” phase
- Expect most “major” standards to move to 25Gb/s regime within the next 12-18 months
 - Ethernet, InfiniBand, FibreChannel all in development at those speeds
Background—Limited Bandwidth Channels Create Inter-Symbol Interference; Equalization Required to Support High Data Rates

- Dispersive nature of channel causes significant spreading of data pulse

- Adjacent symbols smear into each other, resulting in inter-symbol interference (ISI) and potential data errors
Architecture of current high-speed I/Os

Feed-forward equalizer (FFE)

TX

Clock generation

Channel

Decision-feedback equalizer (DFE)

Continuous-time linear equalizer (CTLE)
Low-power Design Areas

Transmitter

Clock generation for CDR

Clock Gen

Data path

Latch

DFE feedback

Input data path
Amplifier / CTLE / DFE summation

Sampling & Amplification

DFE architecture
Outline

- **Introduction**
 - High-Speed I/Os in the wireline link space
 - Equalization techniques

- **Low-power Transmitter**
 - SST vs. CML driver
 - Ultra-low power TX → Avoid TX-FFE

- **Low-power Receiver**
 - Power-optimal amplification
 - Incomplete Settling / Integrating Buffer
 - Low-power DFE Architecture
 - Low-power clock generation

- **Digital approaches**
 - ADC
 - DFE implementations
 - Analog vs. Digital
CML vs. voltage-mode (SST) driver

- **CML (Current mode logic)**
 - 1V_{ppd} swing
 - Load current: +/- 5mA
 - Total current: 20mA

- **SST (Source-Series Terminated)**
 - 1V_{ppd} swing
 - Load current: +/- 5mA
 - Total current: 5mA

- Power is proportional to output swing in both cases
- SST driver allows different termination options (differential, to GND, to VDD)
- Transistors are small due to large gate overdrive
- Small input capacitance → low power in pre-driver

TX with 4-tap Feed-forward equalizer (FFE)

- 3.6 mW/Gbps @ 16 Gb/s and 1V swing

28 Gb/s SST-TX

- Operating speed: up to 28Gb/s at VDD\textsubscript{min}=0.95V
- 4 tap bit-rate FIR feed-forward equalization (FFE)
- +/- 20ps programmable True/Comp. output skew (enabled by SST concept)
- +/- 5% Duty-cycle control
- Adjustable driver impedance
- Full ESD compliance: 2kV HBM, 100V MM, 250V CDM
- High-frequency impedance matching with on-chip T-Coils, <-10dB return loss
- Power consumption = 7mW/Gbps (175mW)

Ultra-Low-power Transmitter Concept

- Equalization done on RX side only
- Avoid TX-FFE

→ (1) **Low power** (1mW/Gbps for TX for 1V swing)
→ (2) Less amplification of **TX clock jitter** (see next slides)
Jitter Amplification in High-Loss Channels

Case I: Low-loss channel

Case II: High-loss channel

→ Jitter is distributed along multiple UIs → Jitter amplification

Case II can be converted to Case I by

1. Continues time linear equalizer (CTLE) at RX side
2. Continues time linear equalizer (CTLE) at TX side
3. Discrete time RX FFE

But not: TX FFE (since it is agnostic of actual jitter value)

→ TX FFE sub-optimal, should be replaced with (1)-(3) if possible
Jitter Amplification: Comparison TX FFE vs. RX FFE

- 25% duty cycle variation applied = high frequency TX jitter at $f_b/2$
- Same equalizer coefficients for TX-FFE and RX-FFE

\rightarrow RX-FFE suffers much less from TX jitter amplification than TX-FFE
\rightarrow Should make use of this fact in future standard definitions
Outline

▪ Introduction
 • High-Speed I/Os in the wireline link space
 • Equalization techniques

▪ Low-power Transmitter
 • SST vs. CML driver
 • Ultra-low power TX → Avoid TX-FFE

▪ Low-power Receiver
 • Power-optimal amplification
 • Incomplete Settling / Integrating Buffer
 • Low-power DFE Architecture
 • Low-power clock generation

▪ Digital approaches
 • ADC
 • DFE implementations
 • Analog vs. Digital
Power optimal Amplification

- Energy/bit = Power * Delay

- **Regenerative amplification** most power efficient

SPA = Single-Pole Amp
OMA = Optimized Multi-pole
RSA = Regenerative Amp
CML vs. StrongARM (=DCVS) comparator latch

\[\tau_i = \frac{C_n}{g_{m_n} - g_{ds_n} - 1/R} \approx \frac{2C_n}{0.9g_{m_n}} \]

\[\tau_i = \frac{C_n + C_p}{g_{m_n} + g_{m_p} - g_{ds_n} - g_{ds_p}} \approx \frac{1.25C_n}{0.9g_{m_n}} \]

- For \(V_{dd}=1V \) transistors are in similar operating point (\(V_{gs}=V_{ds}=0.5V \))
- CML latch achieves smallest \(\tau_i \) when \(R=2/gm_n \)
- StrongARM latch intrinsically faster
- P/N ratio was >2, now approaching 1 due to strain engineering
CML vs. StrongARM Latch Energy Consumption

- CML latch optimized for speed or power
- Comparison for given T_{cycle} and amplification $A = \exp(5)$

- StrongARM latch $\approx 2x$ as power efficient at $T_{\text{cycle}}=100\text{ps}$
First, introduce sampling & reset in data path

For given C_L

- $\tau = R_L C_L$ is varied by varying load resistance R_L
- Power and noise are function of normalized settling time t_s/τ
- Power can be reduced significantly for $R_L \to \infty$, \[\int\] integrator

But: Noise rises significantly when $t_s/\tau < 1.5$

\[\Rightarrow\] Can drive higher load at same noise with lower power

Low-Power Decision Feedback Equalizer (DFE)

- **DFE principle of operation**
 - Direct DFE

- **Low-power DFE**
 - Speculative DFE
 - Integrating DFE
 - Switched-cap feedback

- **Low-power DFE at high-speed (28 Gbps)**
 - Integrating DFE with fast switched-cap path and 3-tap speculation
Principle of DFE

Direct DFE

- Fundamental problem
 - Have to close the to timing loop in the DFE in 1 UI

- Low-power solutions: Relax timing → lower supply voltage
 - Use speculative DFE (see next slide)
 - Improve speed of DFE feedback → switched-cap feedback

\[V_{int} = AV_{in} + d_{n-4}h_4 + ... + d_{n-15}h_{15} \]
Speculation in DFE

Direct DFE

DFE with one speculative tap

$\Delta t = 1\text{UI}$

$\Delta t = 2\text{UI}$

\Rightarrow Timing relaxed by $1\text{UI} - t_{\text{MUX}}$
CTLE + 1-tap speculative DFE results in power-efficient solution

- Good solution for smooth channels
- Avoids analog DFE summation
- Power = 0.7pJ/bit @ 20Gb/s

J. Proesel et al., VLSI 2011
Summation node: Current-Integrating DFE

- **Integrating buffer** instead of resistively loaded buffer
 - Lower power
- 1.4 pJ/bit for 2 taps, 90nm CMOS

Integrating DFE with I-feedback or switched-cap feedback

\[V_{\text{int}} = AV_{\text{in}} + d_{n-4} \cdot h_{4} + \ldots + d_{n-15} \cdot h_{15} \]

I-feedback

[Parks and Bulzacchelli, ISSCC 2007]

Switched-cap feedback

SC-DFE (VLSI 2011)

- I-feedback is replaced with charge feedback \(\rightarrow \) SC-DFE
- Enables faster feedback loop (see next slide)

T. Toifl et al. “A 2.6mW/Gbps 12.5Gbps RX with 8-tap Switched-Cap DFE in 32nm CMOS”, VLSI 2012
DFE: Current feedback vs. switched-cap feedback

Current feedback: previous symbol decision must arrive **before** integration

SC-feedback: previous symbol decision may arrive **later** \(\rightarrow\) **more margin**
SC-DFE DAC Implementation and Measurement

- ±63 steps (6bit+sign) for taps 2-8
- 1 LSB = 250aF
- Excellent linearity
- Very Small area (no I-DAC needed)

- Caps made of min finger M1+M2
- Size of entire SC-DFE tap < 70um² in 32nm (including DAC)
Low-power DFE at 28 Gbit/s

- 28 Gbps : 1UI = 35ps
 - **Half-rate** receiver reaches limit
 - Hard to achieve required amplification in integrator
 - 14GHz CMOS clocking difficult
 - Duty cycle hard to control, need small FO
 - Electromigration requires to add lots of metal in the layout
 → **Quarter-rate** receiver more power-efficient

- **Single-tap** speculative DFE too slow
 - Feedback time only $t_{fb}=70ps$
 → **Three-tap speculation** relaxes timing ($t_{fb}=210ps$)
 → Can reduce supply voltage and use higher fan-out
3 Tap Speculation

- Now 8 latches
- Power ~ 150fJ/bit per latch → moderate penalty
- Critical path now 4UIs
 ➔ Timing relaxed by 3UI - 3t_{MUX}
DFE + Demux slice (1 slice of 4 total)

Actually 10 comparator latches per slice: 8 active + 2 used for calibration
Layout and power breakout @ 30Gb/s

- Core DFE size = 200x90μm
- Need to calibrate 40 comparator offsets and 48 DFE taps

30Gb/s

Graph:
- Frequency range: 0 to 20 GHz
- DD21 vs. Frequency
- DD21 values:
 - 0 dB at 0 GHz
 - -30 dB at 15 GHz

Equation:
- TX FFE = [0 67 -29]

Power Calculation:
- Power = 92 mW
- V_{DD} = 1.15 V
- Power efficiency = 3.1 pJ/bit
Low-power RX clock generation

- Clock generation for quarter-rate CDR system
 - Phase-programmable PLL (P-PLL)
 - Design example:
 - 40Gb/s RX using P-PLL
Quarter-rate Clock and Data Recovery

From Multi-Phase Clock Generator

- CDR loop adjusts timing
- Data
 - D0
 - D1
 - D2
 - D3

4 Received bits per clock cycle
2 Sample bits/symbol (data, edge)
→ Need 4x2 clock phases
→ Need to shift 8 clocks simultaneously
Quarter-rate Dual-loop architecture

Phase rotators:
- Area
- Power
- Mismatch
- Need at least 2 ref phases

Previous solution
Quarter-rate Dual-loop architecture

- Phases can be programmed by digital value \(\rightarrow\) Enables digital CDR loop
- Provides tight lock to high-reference frequency \(\rightarrow\) low jitter

Phase-Programmable PLL (P-PLL)
40 Gb/s CDR Architecture using P-PLL

[37] T. Toifl et al., "A 72 mW 0.03 mm² inductorless 40 Gb/s CDR in 65 nm SOI CMOS," ISSCC 2007.
Chip Photograph and Layout of 40Gb/s RX

- **Power**: 1.8pJ/bit @ 40 Gbps
- **Area**: <0.03mm² in 65nm CMOS, no inductors uses
Outline

- **Introduction**
 - High-Speed I/Os in the wireline link space
 - Equalization techniques

- **Low-power Transmitter**
 - SST vs. CML driver
 - Ultra-low power TX → Avoid TX-FFE

- **Low-power Receiver**
 - Power-optimal amplification
 - Incomplete Settling / Integrating Buffer
 - Low-power DFE Architecture

- **Digital approaches**
 - ADC
 - DFE implementations
 - Analog vs. Digital
ADC-based I/Os

- New standards emerging operating with PAM-4
 - IEEE 802.3bj (100Gb Ethernet over backplane)
 - PAM-4 mode for high channel loss (>40dB)

- Requirements for ADC
 - Rather low resolution (<5bits)
 - Low latency (for closing CDR loop)
 - Flash ADC
 - High conversion rates
 - Interleave Flash ADC
 - Low input capacitance required

Example: Low-power flash ADC with small input cap
Low-power flash ADC with small input cap

- Integrating buffer drives big load with small input capacitance

- Comparator slice consists of offset-adjustable SenseAmp latch (no reference ladder required)
Low-power flash ADC results

ADC cell can be time-interleaved to achieve higher conversion rates
Digital DFE

- Relatively simple and low-power
 - **Case I : low speed (<5Gbit/s)**
 - DFE loop can be implemented by digital adder
 - Critical path is adder and comparator
 - Taps can also be combined in LUT
Digital DFE

- Relatively simple and low-power
 - **Case II**: small number of DFE taps \((n \leq 5)\)
 - Digital loop unrolling requires \(2^n\) comparators

- Comparator power: <100uW/Gbps
- Critical path: 2:1 MUX

- Hard problem is long DFE (eg 15 taps) at high speed (eg 28Gb/s)
Analog vs. Digital: RX power comparison

- **Power: Optimized Analog RX** with 15-tap DFE
 - Clock path: 2mW/Gbps
 - Linear equalizer (CTLE): 1.5mW/Gbps
 - DFE: **3mW/Gbps** for 15-tap DFE @ 25Gb/s
 - **Total: 6.5 mW/Gbps**

- **Power: ADC based RX** with 15-tap digital DFE
 - Clock path: **1mW/Gbps** (no edge samples required with Mueller-Müller CDR)
 - Linear equalizer (CTLE): 1.5mW/Gbps
 - ADC: 4mW/Gbps
 - DSP: FFE: 3mW/Gbps + DFE: 3mW/Gbps
 - **Total: 12.5mW/Gbps**

→ ADC power alone is ≥ DFE power
 → **Analog will stay lowest power solution for DFE equalization**

Why ? Analog well suited for DFE: **fast summation with moderate accuracy**
BUT: gap will shrink as technology scales
Summary

- **Low-power TX techniques**
 - SST drivers: low-power, multi-standard
 - Avoid TX-FFE: Low power, less jitter amplification

- **Low-power RX Techniques**
 - Regenerative amplification, StrongARM (DCVS) latch
 - Integrating DFE using switched-cap feedback
 - P-PLL phase generation

- **Digital (ADC-based) I/O approaches**
 - ADC : Flash ADC <4mW/Gbps
 - Analog is lower power solution for long DFE at high speeds
 - High-speed I/Os will follow route of Gb Ethernet over UTP
Acknowledgements

IBM

- Christian Menolfi
- Peter Buchmann
- Marcel Kossel
- Matthias Brändli
- Thomas Morf
- Pier Andrea Francese
- John Bulzacchelli
- Troy Beukema
- Tod Dickson
- Dan Dreps
- Steve Baumgartner
- Fran Keyser
- John Berqkvist
- Martin Schmatz

Miromico

- Robert Reutemann
- Michael Ruegg
- Daniele Gardellini
- Andrea Prati
- Giovanni Cervelli
Thank you for your attention!
Summary of Equalization Techniques

- **Feed-forward Equalization (FFE)**
 - FIR filter, usually implemented at TX side

- **Continuous-Time Linear Equalizers (CTLE)**
 - Increase high-frequency gain and/or decrease low-frequency gain to compensate for low-pass channel characteristics.

- **Decision Feedback Equalization (DFE)**
 - Feed back previous bit decisions to cancel postcursor ISI caused by those bits.
Source-synchronous Links Application Area

Important parameters:

• throughput (Gb/s per pin)
• power (mW per Gb/s or equivalently pJ per bit)
• limited die area (μm^2 per Gb/s, fit beneath C4 balls)
• Latency (memory links, SMP links)
Switched-cap DFE principle

- Current feedback replaced by charge feedback
- Capacitive DAC (6 bits+sign, +/-0..63): 4 binary (1,2,4,8) + 3 bits therm-coded (16,16,16)
- unused caps disconnected by PFET pass transistors (reduced cap loading)
- Transistors used as switches (digital design style, don't care about 'analog' parms like gm, gds)
- DFE timing margin is improved wrt to integrating DFE with current feedback
- Addition of charges is highly linear: needed for large number (e.g. 20) DFE or X-talk cancellation
- Half-rate architecture
- 4-tap feed-forward equalizer (FFE)
- Programmable output impedance

courtesy Christian Menolfi

[1],[5]
Jitter Amplification in High-Loss Channels

- Jitter can be approximated by Dirac impulse at edge position [1]

\[e^{\frac{b_k}{kT}} + e^{\frac{-b_k}{(k+1)T}} \approx b_k e^{TX}_{k+1} \]

- Jitter is then converted to **voltage noise** in the sampling point

[1] V. Stojanović et al., "Optimal Linear Precoding with Theoretical and Practical Data Rates in High-Speed Serial-Link Backplane Communication", ICC 2004
Sampling is done by \(T/H \) at the input
- Total input capacitance is \(N \cdot C_s/2 \)
- Advantages
 - Signal processing now in \textit{discrete time domain}
 - Reduced bandwidth requirements due to
 - Sub-rate
 - Can use \textit{reset} to erase history
 - Buffers can use \textit{incomplete settling} or \textit{integration}
P-PLL – Key points:

Advantages

- Clocks from VCO go directly into the latches
- No need for phase rotators
- Clock path is very short
- Phase-rotation with XOR phase detectors is inherently linear
- High-frequency noise on input clock signal is filtered out

Disadvantages

- Phase noise is accumulated due to PLL operation

 But: PLL bandwidth is extremely high (>1 GHz for 10GHz clock)

 → Noise is attenuated to large extent

- Phase-rotation now in feedback-path

 But: No influence on CDR due to high PLL bandwidth
References

SST- Transmitter

References

Latch Modeling and Optimization

References

Low-power techniques

References

DFE Implementations

References

Source-Synchronous RX /Clean up PLL/ P-PLL

References

25-40 Gbps CDR Circuits

References

High-Speed ADC and Digital I/O Implementations

References

Link modelling

References

Additional/General Papers

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASST</td>
<td>At-Speed Structural Test</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>CDR</td>
<td>Clock and Data recovery</td>
</tr>
<tr>
<td>CML</td>
<td>Current Mode Logic</td>
</tr>
<tr>
<td>CTLE</td>
<td>Continuous Time Linear Equalizer</td>
</tr>
<tr>
<td>DCVS</td>
<td>Differential Cascode Voltage Switch (circuit)</td>
</tr>
<tr>
<td>DFE</td>
<td>Decision Feedback Equalizer</td>
</tr>
<tr>
<td>DLL</td>
<td>Delay Locked Loop</td>
</tr>
<tr>
<td>FFE</td>
<td>Feed-forward Equalizer</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>FS-CMOS</td>
<td>Full-swing CMOS (=inverter based clocking)</td>
</tr>
<tr>
<td>INL</td>
<td>Integral Non-Linearity</td>
</tr>
<tr>
<td>ISI</td>
<td>Intersymbol Interference</td>
</tr>
<tr>
<td>LSSD</td>
<td>Level Sensitive Scan Design</td>
</tr>
<tr>
<td>PLL</td>
<td>Phase-Locked Loop</td>
</tr>
<tr>
<td>P-PLL</td>
<td>Phase Programmable PLL</td>
</tr>
<tr>
<td>PPF</td>
<td>Poly-phase filter</td>
</tr>
<tr>
<td>RX</td>
<td>Receiver</td>
</tr>
<tr>
<td>SC-DFE</td>
<td>Switched-Cap DFE</td>
</tr>
<tr>
<td>S.E.</td>
<td>Single-Ended</td>
</tr>
<tr>
<td>SOI</td>
<td>Silicon On Insulator</td>
</tr>
<tr>
<td>SST</td>
<td>Source-Series Terminated</td>
</tr>
<tr>
<td>VCO</td>
<td>Voltage Controlled Oscillator</td>
</tr>
<tr>
<td>T/H</td>
<td>Track and Hold</td>
</tr>
<tr>
<td>TX</td>
<td>Transmitter</td>
</tr>
</tbody>
</table>