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I/O Link Technology group @ IBM ZRL

What we do

- I/O PHY circuit design

- backplane and chip-to-chip (e.g. processor, memory)
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Technical goals to meet

- Distance: 10-100cm

- Attenuation: 10-40dB

- Data rate: 3-40 Gbit/s

- Energy/bit: <10pJ/bit

- Chip area : 0.1 mm2
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General research directions

Data rate

Power efficiency

(e.g. 28Gb/s )

(e.g. 5pJ/bit)

(e.g. 28Gbit @ 30dB channel attenuation measured at fbaud/2)

Side conditions: chip area, testability, standard compliance, reliability etc.

Distance (=allowable channel attenuation 
~equalizer complexity
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Outline
▪ Introduction

• High-Speed I/Os in the wireline link space
• Equalization techniques

▪ Low-power Transmitter
• SST vs. CML driver
• Ultra-low power TX � Avoid TX-FFE

▪ Low-power Receiver
• Power-optimal amplification
• Incomplete Settling / Integrating Buffer

• Low-power DFE Architecture

• Low-power clock generation

▪ Digital approaches
• ADC

• DFE implementations
• Analog vs. Digital



High-speed I/Os compared with other wireline links

NEXT+FEXT75 tap NEXT-X-talk canc

x50x10x1Energy/bit

16 tap THP12 tap FFE
14 tap DFE

£5 tap FFE
£15 tap DFE

Equalization

>200 Taps60 Taps-Echo canc

PAM-16 + LDPCPAM-5 + TrellisNRZCoding

1021Rate/channel 
BW (HSS=1)

2*2.52 * 0.253-20Data rate/lane 
[Gbps]

YESYES-Bidirectional

10Gbit Ethernet 
10GBase-T 

802.3an 

Gbit Ethernet 
1000Base-T 

802.3ab 

High-speed 
serial (backplane 
or chip-to-chip)

5

Case #1 High-speed I/Os (up to now):  Simple, analog, rather low-power
Case #2 Ethernet over copper :  Digital (ADC) + lots of signal processing

���� Goal: More complex equalization at low power
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I/O Standards Roadmaps versus Data Rate

� Current standards mostly in the 10-14Gb/s range
– OIF CEI pushing aggressively to 25G, still in “early adoption” phase

� Expect most “major” standards to move to 25Gb/s regim e within 
the next 12-18 months
– Ethernet, InfiniBand, FibreChannel all in development at those speeds

0

10

20

30

40

50

60

FibreChannel Ethernet InfiniBand PCI-Express OIF CEI SAS

G
b/

s
Proposed

In Development

Available



© 2012 IBM Corporation7

Background— Limited Bandwidth Channels Create Inter-Symbol 
Inteference; Equalization Required to Support High Data Rates

� Adjacent symbols smear into each other, resulting in 
inter-symbol interference (ISI) and potential data errors

0 0 1 0 1 0 0 0 0 1 1 1 1 0

Decision
Threshold

� Dispersive nature of channel causes significant spread ing 
of data pulse
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Architecture of current high-speed I/Os
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Low -power Design Areas

TX Latch

Clock Gen

DFE feedback

Data path

TX Latch

Clock Gen

DFE feedback

Data path

Sampling & 
AmplificationInput data path

Amplifier / CTLE / DFE summation DFE architecture

Clock generation 
for CDRTransmitter
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Outline
▪ Introduction

• High-Speed I/Os in the wireline link space

• Equalization techniques

▪ Low-power Transmitter
• SST vs. CML driver
• Ultra-low power TX ���� Avoid TX-FFE

▪ Low-power Receiver
• Power-optimal amplification
• Incomplete Settling / Integrating Buffer

• Low-power DFE Architecture

• Low-power clock generation

▪ Digital approaches
• ADC

• DFE implementations
• Analog vs. Digital
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CML vs. voltage-mode (SST) driver

• 1Vppd swing
• Load current : +/- 5mA
• Total current: 20mA

• 1Vppd swing
• Load current : +/- 5mA
• Total current: 5mA

- Power is proportional to output swing in both cases

- SST driver allows different termination options (differential, to GND, to VDD)

CML (Current mode logic) SST (Source-Series Terminated)
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Half-rate SST Driver

C. Menolfi et al., "A 16Gb/s Source-Series Terminated Transmitter in 65nm SOI ," ISSC 2007. 

- Transistors are small due to large gate overdrive

- Small input capacitance → low power in pre-driver
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TX with 4-tap Feed-forward equalizer (FFE)

- 3.6 mW/Gbps @ 16 Gb/s and 1V swing

C. Menolfi et al., "A 16Gb/s Source-Series Terminated Transmitter in 65nm SOI ," ISSC 2007. 

FFE waveform example
ck2
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28 Gb/s SST-TX 

� Operating speed: up to 28Gb/s at VDDmin=0.95V

� 4 tap bit-rate FIR feed-forward equalization (FFE)

� +/- 20ps programmable True/Comp. output skew (enabled by SST concept)

� +/- 5% Duty-cycle control

� Adjustable driver impedance

� Full ESD compliance: 2kV HBM, 100V MM, 250V CDM

� High-frequency impedance matching with on-chip T-Coils, <-10dB return loss  

� Power consumption = 7mW/Gbps (175mW)

T-Coil

T-Coil

ESD

ESD

125um

180 um

290 um

T-Coil

T-Coil

ESD

ESD

125um

180 um

290 um

720mV

35.7ps

C. Menolfi et al., "A 28Gb/s Source-Series Terminated Transmitter in 32nm SOI“, ISSCC 2012. 
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Ultra-Low-power Transmitter Concept

TX Channel

NO Feed-forward equalizer
(FFE)

CTLE

Continuous-Time
Linear Equalizer
(CTLE)

n-tap
DFE

Decision-Feedback
Equalizer (DFE)

Received
Data

• Equalization done on RX side only
• Avoid TX-FFE

� (1) Low power (1mW/Gbps for TX for 1V swing)

� (2) Less amplification of TX clock jitter (see next slides)
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Jitter Amplification in High-Loss Channels

Case I : Low-loss channel

Case II : High-loss channel :

����Jitter is distributed along multiple UIs ���� Jitter amplification

Voltage error in sampling point

Case II can be converted to Case I by
(1) Continues time linear equalizer (CTLE) at RX side
(2) Continues time linear equalizer (CTLE) at TX side
(3) Discrete time RX FFE

But not: TX FFE (since it is agnostic of actual jitter value )
���� TX FFE sub-optimal, should be replaced with (1)-(3)  if possible

Jitter event �
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Jitter Amplification: Comparison TX FFE vs. RX FFE

TX-FFE RX-FFE

- 25% duty cycle variation applied = high frequency TX jitter at fb/2
- Same equalizer coefficients for TX-FFE and RX-FFE

�RX-FFE suffers much less from TX jitter amplificati on than TX-FFE
� Should make use of this fact in future standard definitions

Courtesy Troy Beukema

 
TX FFE Channel RX 

Clock 
Jitter 

 
TX FFE Channel RX 

Clock 
Jitter 
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Outline
▪ Introduction

• High-Speed I/Os in the wireline link space

• Equalization techniques

▪ Low-power Transmitter
• SST vs. CML driver
• Ultra-low power TX � Avoid TX-FFE

▪ Low-power Receiver
• Power-optimal amplification
• Incomplete Settling / Integrating Buffer
• Low-power DFE Architecture
• Low-power clock generation

▪ Digital approaches
• ADC

• DFE implementations
• Analog vs. Digital
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Power optimal Amplification 

- Energy/bit = Power * Delay

- Regenerative amplification most power efficient

J. Wu and B. Wooley, "A 100-MHz Pipelined CMOS Comparator," JSSC 1988. 

[14]

SPA  = Single-Pole Amp

OMA = Optimized Multi-pole

RSA = Regenerative Amp

Amplification

P
ow
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 D
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CML vs. StrongARM (=DCVS) comparator latch

vout

voutb

vin

vinb

φφφφ

φφφφ

vbias

vout

voutb

vin

vinb

φφφφ

φφφφ

vbias

φφφφ φφφφ

vin

vinb

φφφφ

φφφφ

vout
voutb

φφφφ φφφφ

vin

vinb

φφφφ

φφφφ

vout
voutb

n

n

nn

n
i gm

C

Rgdsgm

C

9.0

2

/1
≅

−−
=τ

n

n

pnpn

pn
i gm

C

gdsgdsgmgm

CC

9.0

25.1≅
−−+

+
=τ

� For Vdd=1V transistors are in similar operating point (Vgs=Vds=0.5V)

� CML latch achieves smallest τi when R=2/gmn

� StrongARM latch intrinsically faster

� P/N ratio was >2, now approaching 1 due to strain engineering 
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� CML latch optimized for speed or power 

� Comparison for given Tcycle and amplification A = exp(5)

� StrongARM latch ≈2x as power efficient at T cycle =100ps

CML vs. StrongARM Latch Energy Consumption
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Incomplete Settling → Integrating buffer

vbias

CL RL

vbias

CL RL

vbias

CL CL

vbias

CL CL

RL→∞, ts/τ→0 0 1 2 3 4 5 6
0

2

4

6

8

10

τ=RLCL ts/τ

Power

Noise

� First, introduce sampling & reset in data path
� For given CL

� τ=RLCLis varied by varying load resistance RL

� Power and noise are function of normalized settling time ts/τ
� Power can be reduced significantly for RL→∞, � integrator)

� But: Noise rises significantly when ts/τ < 1.5
� Can drive higher load at same noise with lower power

E. Iroaga and B. Murmann, "A 12-Bit 75-MS/s Pipelined ADC Using Incomplete Settling", JSSC 2007. 
A

rb
itr

ar
y 

U
ni

ts

Normalized settling timeTime

[9]

ts= Tcycle/2

ts/ττττ = 0
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Low -Power Decision Feedback Equalizer (DFE)

� DFE principle of operation
� Direct DFE

� Low -power DFE
� Speculative DFE
� Integrating DFE
� Switched-cap feedback

� Low -power DFE at high-speed (28 Gbps)
� Integrating DFE with fast switched-cap path and 3-t ap 

speculation
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Principle of DFE

vin(t) sn

+/-1

TTT

h-1 h-2 h-3 

vin(t) sn

+/-1

TTTTTT

h-1 h-2 h-3 

Direct DFE
critical path

t=1UI

� Fundamental problem

� Have to close the to timing loop in the DFE in 1 UI

� Low-power solutions : Relax timing ���� lower supply voltage

� Use speculative DFE (see next slide)

� Improve speed of DFE feedback ���� switched-cap feedback

Vint=AVin+dn-4*h4+…+dn-15*h15

dn
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Speculation in DFE

vin(t) sn

+/-1
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h-1 h-2 h-3 

vin(t) sn

+/-1

TTTTTT

h-1 h-2 h-3 

Direct DFE

DFE with one
speculative tap

DFE feedback
path ∆t=1UI

∆t=2UI

���� Timing relaxed by 1UI - t MUX
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CTLE + 1-tap speculative DFE results in power-effic ient solution

J. Proesel et al., VLSI 2011

� Good solution for smooth channels

� Avoids analog DFE summation 

� Power = 0.7pJ/bit @ 20Gb/s
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Summation node: Current-Integrating DFE

� Integrating buffer instead of resistively loaded buffer

� Lower power

� 1.4 pJ/bit for 2 taps, 90nm CMOS
M. Park, et al., "A 7 Gb/s 9.3 mW 2-Tap Current Integrating DFE Receiver", ISSCC 2007. 

Resistors replaced with 
resettable capacitors
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Integrating DFE with I-feedback or switched-cap feedb ack

� I-feedback is replaced with charge feedback � SC-DFE

� Enables faster feedback loop (see next slide)

Vint=AVin+dn-4*h4+…+dn-15*h15

I- feedback
[Parks and Bulzacchelli, ISSCC 2007]

Switched-cap feedback
SC-DFE (VLSI 2011)

 

vin vin d-2 d-2 
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CL CL 

 

vin vin 
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Vreg 

… 

φ φ 
CL CL 

h2 h2 

d-8 

Vreg 

h8 h8 

T. Toifl et al. “A 2.6mW/Gbps 12.5Gbps RX with 8-tap Switched-Cap DFE in 32nm CMOS”, VLSI 2012
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DFE: Current feedback vs. switched-cap feedback

 

INTEGRATE INTEGRATE RESET Clock 

vo, vo 

hn 

hn 

SAMPLE SAMPLE 

Current feedback : previous symbol decision must arrive before integration

 

INTEGRATE INTEGRATE RESET Clock 

vo, vo 

hn 

hn 

SAMPLE SAMPLE 

SC-feedback : previous symbol decision may arrive later � more margin
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• Caps made of min finger M1+M2
• Size of entire SC-DFE tap < 70um2

in 32nm (including DAC)

SC-DFE DAC Implementation and Measurement

• ±63 steps (6bit+sign) for taps 2-8
• 1 LSB = 250aF
• Excellent linearity 
• Very Small area (no I-DAC needed)

V
ol

ta
ge

 [m
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Low -power DFE at 28 Gbit/s

� 28 Gbps : 1UI = 35ps

� Half-rate receiver reaches limit
• Hard to achieve required amplification in integrator
• 14GHz CMOS clocking difficult  

• Duty cycle hard to control, need small FO

• Electromigration requires to add lots of metal in the layout

→ Quarter-rate receiver more power-efficient

� Single-tap speculative DFE too slow
• Feedback time only tfb=70ps

→ Three-tap speculation relaxes timing (tfb=210ps)
→ Can reduce supply voltage and use higher fan-out
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3 Tap Speculation

� Now 8 latches
� Power ~ 150fJ/bit per latch � moderate penalty
� Critical path now 4UIs
� Timing relaxed by 3UI - 3tMUX

DFE feedback
path ∆t=4UI
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DFE + Demux slice (1 slice of 4 total)

Actually 10 comparator latches per slice : 8 active + 2 used for calibration
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Layout and power breakout @ 30Gb/s

0 2 1 3

T-coil
&

ESD

SC-DFE
12 cells

CTLE

Digital

Clk gen & bias

250um0 2 1 3

T-coil
&

ESD

SC-DFE
12 cells

CTLE

Digital

Clk gen & bias

250um

� Core DFE size = 200x90 µm

� Need to calibrate 40 comparator offsets and 48 DFE taps 

DFE and Demux
2.5mW/Gbps

CTLE
0.2mW/Gbps I/Q gen

(CML Clock div)
0.27mW/Gbps

Clkbuf & CML2CMOS
0.13mW/Gbps

Total: 92mW = 3.1mW/Gbps 

DFE and Demux
2.5mW/Gbps

CTLE
0.2mW/Gbps I/Q gen

(CML Clock div)
0.27mW/Gbps

Clkbuf & CML2CMOS
0.13mW/Gbps

Total: 92mW = 3.1mW/Gbps 

T. Toifl, et al., "A 3.1mW/Gbps 30Gbps Quarter-Rate Triple-Speculation 15-tap SC-DFE RX Data Path 
in 32nm CMOS", VLSI 2012. 
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Low -power RX clock generation

� Clock generation for quarter-rate CDR system

� Phase-programmable PLL (P -PLL)
� Design example: 

• 40Gb/s RX using P-PLL
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Quarter-rate Clock and Data Recovery

φ7

φ6

φ5

φ4

φ3

φ2

φ1

φ0

Data 

CDR loop adjusts timing

D0 D1 D2 D3 

4 Received bits per clock cycle
2 Sample bits/symbol (data, edge)
→ Need 4x2 clock phases
→ Need to shift 8 clocks simultaneously

From Multi-
Phase Clock 
Generator
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PLL/DLL
Polyphase

8 Sampling 
Latches

Digital 
Loop Filter

Digital DLL

8 Phases

k Phases

4 Data Bits

φref

Data
40 Gbps

8 Phase 
Rotators

PLL/DLL
Polyphase

8 Sampling 
Latches

Digital 
Loop Filter

Digital DLL

8 Phases

k Phases

4 Data Bits

φref

Data
40 Gbps

8 Phase 
Rotators

Quarter-rate Dual-loop architecture

Phase rotators:

- Area

- Power

- Mismatch

- Need at least 2 ref phases

Previous solution
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PLL/DLL
Polyphase

8 Sampling 
Latches

Digital 
Loop Filter

Digital DLL

8 Phases

k Phases

4 Data Bits

φref

Data
40 Gbps

8 Phase 
Rotators

PLL/DLL
Polyphase

8 Sampling 
Latches

Digital 
Loop Filter

Digital DLL

8 Phases

k Phases

4 Data Bits

φref

Data
40 Gbps

8 Phase 
Rotators

Quarter-rate Dual-loop architecture

⇒⇒⇒⇒ Phase-Programmable PLL (P-PLL)

P-PLL

8 Sampling 
Latches

Digital 
Loop Filter

Digital DLL

8 Phases

4 Data Bits

φref

Data
40 Gbps

� Phases can be programmed by digital value � Enables digital CDR loop

� Provides tight lock to high-reference frequency � low jitter
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40 Gb/s CDR Architecture using P-PLL

288 steps / 4 UI 
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288 steps / 4 UI 
[37] T. Toifl et al., "A 72 mW 0.03 mm2 inductorless 40 Gb/s CDR in 65 nm SOI CMOS," ISSCC 2007. 

P-PLL 
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Chip Photograph and Layout of 40Gb/s RX

� Power : 1.8pJ/bit @ 40 Gbps
� Area: <0.03mm2 in 65nm CMOS, no inductors uses
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Outline
▪ Introduction

• High-Speed I/Os in the wireline link space

• Equalization techniques

▪ Low-power Transmitter
• SST vs. CML driver
• Ultra-low power TX � Avoid TX-FFE

▪ Low-power Receiver
• Power-optimal amplification
• Incomplete Settling / Integrating Buffer

• Low-power DFE Architecture

▪ Digital approaches
• ADC
• DFE implementations
• Analog vs. Digital
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ADC-based I/Os

▪ New standards emerging operating with PAM-4
• IEEE 802.3bj (100Gb Ethernet over backplane)

• PAM-4 mode for high channel loss (>40dB)

▪ Requirements for ADC
• Rather low resolution (<5bits)
• Low latency (for closing CDR loop)
� Flash ADC
• High conversion rates
� Interleave Flash ADC
� Low input capacitance required

Example: Low-power flash ADC with small input cap
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Low-power flash ADC with small input cap
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- Integrating buffer drives big load with small input capacitance

- Comparator slice consists of offset-adjustable SenseAmp latch
(no reference ladder required)
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Low-power flash ADC results 
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120 mm
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� ADC cell can be time-interleaved to achieve higher conversion rates
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Digital DFE

▪ Relatively simple and low-power
• Case I : low speed (<5Gbit/s)

• DFE loop can be implemented by digital adder
• Critical path is adder and comparator
• Taps can also be combined in LUT
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Digital DFE

▪ Relatively simple and low-power
• Case II : small number of DFE taps (n ≤ 5)

• Digital loop unrolling requires 2n comparators
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- Comparator power: <100uW/Gbps
- Critical path: 2:1 MUX

- Hard problem is long DFE (eg 15 taps) 
at high speed (eg 28Gb/s)
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Analog vs. Digital: RX power comparison

▪ Power: Optimized Analog RX with 15-tap DFE
• Clock path: 2mW/Gbps 

• Linear equalizer (CTLE): 1.5mW/Gbps

• DFE: 3mW/Gbps for 15-tap DFE @ 25Gb/s
• Total: 6.5 mW/Gbps

▪ Power: ADC based RX with 15-tap digital DFE 
• Clock path: 1mW/Gbps (no edge samples required with Mueller-Müller CDR)

• Linear equalizer (CTLE): 1.5mW/Gbps

• ADC: 4mW/Gbps
• DSP: FFE: 3mW/Gbps + DFE: 3mW/Gbps 

• Total: 12.5mW/Gbps

�ADC power alone is ≥ DFE power
� Analog will stay lowest power solution for DFE equa lization

Why ? Analog well suited for DFE: fast summation with moderate accuracy
BUT: gap will shrink as technology scales
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Summary

▪ Low -power TX techniques
• SST drivers: low-power, multi-standard
• Avoid TX-FFE: Low power, less jitter amplification

▪ Low -power RX Techniques
• Regenerative amplification, StrongARM (DCVS) latch
• Integrating DFE using switched-cap feedback
• P-PLL phase generation

▪ Digital (ADC -based) I/O approaches
• ADC : Flash ADC <4mW/Gbps
• Analog is lower power solution for long DFE at high speeds
• High-speed I/Os will follow route of Gb Ethernet over UTP
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Thank you for your attention!
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Additional Slides
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Summary of Equalization Techniques

� Feed-forward Equalization (FFE)

– FIR filter, usually implemented at TX side

� Continuous-Time Linear Equalizers (CTLE)

– Increase high-frequency gain and/or decrease low-frequency 
gain to compensate for low-pass channel characteristics.

� Decision Feedback Equalization (DFE)

– Feed back previous bit decisions to cancel postcursor ISI 
caused by those bits.
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Source-synchronous Links Application Area

Important parameters:
• throughput (Gb/s per pin)
• power (mW per Gb/s or equivalently pJ per bit)
• limited die area (µm2 per Gb/s, fit beneath C4 balls)
• Latency (memory links, SMP links)
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Switched-cap DFE principle
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single SC-cap DFE tap

- Current feedback replaced by charge feedback

- Capacitive DAC (6 bits+sign, +/-0..63): 4 binary (1,2,4,8) + 3 bits therm-coded (16,16,16)

- unused caps disconnected by PFET pass transistors (reduced cap loading)

- Transistors used as switches (digital design style, don't care about 'analog' parms like gm, gds)

- DFE timing margin is improved wrt to integrating DFE with current feedback

- Addition of charges is highly linear: needed for large number (e.g. 20) DFE or X-talk cancellation
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TX Architecture 
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▪ Half-rate architecture
▪ 4-tap feed-forward equalizer (FFE)
▪ Programmable output impedance

courtesy Christian Menolfi

[1],[5]
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Jitter Amplification in High-Loss Channels

- Jitter can be approximated by Dirac impulse at edge position [1]

- Jitter is then converted to voltage noise in the sampling point

[1] V. Stojanović et al., "Optimal Linear Precoding with Theoretical and Practical Data Rates in High-Speed Serial-Link Backplane Communication", ICC 2004

TX jitter folded with channel response
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L

∆V

LL

∆V

Sampling in Data Path vs. continuous time data path

� Sampling is done by T/H at the input

� Total input capacitance is N·Cs/2

� Advantages

- Signal processing now in discrete time domain

-> Reduced bandwidth requirements due to

-> Sub-rate

-> Can use reset to erase history

-> Buffers can use incomplete settling or integration
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P-PLL – Key points:
� Advantages

• Clocks from VCO go directly into the latches

• No need for phase rotators

• Clock path is very short

• Phase-rotation with XOR phase detectors is inherently linear

• High-frequency noise on input clock signal is filtered out

� Disadvantages

• Phase noise is accumulated due to PLL operation

But: PLL bandwidth is extremely high (>1 GHz for 10GHz clock)

� Noise is attenuated to large extent

• Phase-rotation now in feedback-path

But: No influence on CDR due to high PLL bandwidth
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Acronyms
ASST At-Speed Structural Test
BER Bit Error Rate
CDR Clock and Data recovery
CML Current Mode Logic
CTLE Continuous Time Linear Equalizer
DCVS Differential Cascode Voltage Switch (circuit)
DFE Decision Feedback Equalizer
DLL Delay Locked Loop
FFE Feed-forward Equalizer
FFT Fast Fourier Transform
FS-CMOS Full-swing CMOS (=inverter based clocking)
INL Integral Non-Linearity
ISI Intersymbol Interference
LSSD Level Sensitive Scan Design
PLL Phase-Locked Loop
P-PLL Phase Programmable PLL
PPF Poly-phase filter
RX Receiver
SC-DFE Switched-Cap DFE
S.E. Single-Ended
SOI Silicon On Insulator
SST Source-Series Terminated
VCO Voltage Controlled Oscillator
T/H Track and Hold
TX Transmitter


