

IBM Research GmbH Zurich Research Laboratory Rüschlikon, Switzerland

Low-power High-Speed CMOS I/Os: Design Challenges and Solutions

Thomas Toifl

TWEPP 2012 Sept. 20th, 2012

I/O Link Technology group @ IBM ZRL

What we do

- I/O PHY circuit design
- backplane and chip-to-chip (e.g. processor, memory)

Technical goals to meet

- Distance: 10-100cm
- Attenuation: 10-40dB
- Data rate: 3-40 Gbit/s
- Energy/bit: <10pJ/bit
- Chip area : 0.1 mm²

General research directions

Distance (=allowable channel attenuation ~equalizer complexity

(e.g. 28Gbit @ 30dB channel attenuation measured at f_{baud}/2)

Side conditions: chip area, testability, standard compliance, reliability etc.

Outline

- Introduction
 - High-Speed I/Os in the wireline link space
 - Equalization techniques
- Low-power Transmitter
 - SST vs. CML driver
 - Ultra-low power TX → Avoid TX-FFE

Low-power Receiver

- Power-optimal amplification
- Incomplete Settling / Integrating Buffer
- Low-power DFE Architecture
- Low-power clock generation

Digital approaches

- ADC
- DFE implementations
- Analog vs. Digital

High-speed I/Os compared with other wireline links

	High-speed serial (backplane or chip-to-chip)	Gbit Ethernet 1000Base-T 802.3ab	10Gbit Ethernet 10GBase-T 802.3an
Bidirectional	-	YES	YES
Data rate/lane [Gbps]	3-20	2 * 0.25	2*2.5
Rate/channel BW (HSS=1)	1	2	10
Coding	NRZ	PAM-5 + Trellis	PAM-16 + LDPC
Equalization	≤5 tap FFE ≤15 tap DFE	12 tap FFE 14 tap DFE	16 tap THP
Echo canc	-	60 Taps	>200 Taps
X-talk canc	-	75 tap NEXT	NEXT+FEXT
Energy/bit	x1	x10	x50

Case #1 High-speed I/Os (up to now): Simple, analog, rather low-power Case #2 Ethernet over copper: Digital (ADC) + lots of signal processing

 \rightarrow Goal: More complex equalization at low power

I/O Standards Roadmaps versus Data Rate

Current standards mostly in the 10-14Gb/s range

- OIF CEI pushing aggressively to 25G, still in "early adoption" phase
- Expect most "major" standards to move to 25Gb/s regime within the next 12-18 months
 - Ethernet, InfiniBand, FibreChannel all in development at those speeds

Background— Limited Bandwidth Channels Create Inter-Symbol Inteference; Equalization Required to Support High Data Rates

 Dispersive nature of channel causes significant spreading of data pulse

Architecture of current high-speed I/Os

Feed-forward equalizer (FFE)

Low-power Design Areas

Outline

- Introduction
 - High-Speed I/Os in the wireline link space
 - Equalization techniques
- Low-power Transmitter
 - SST vs. CML driver
 - Ultra-low power TX \rightarrow Avoid TX-FFE
- Low-power Receiver
 - Power-optimal amplification
 - Incomplete Settling / Integrating Buffer
 - Low-power DFE Architecture
 - Low-power clock generation
- Digital approaches
 - ADC
 - DFE implementations
 - Analog vs. Digital

CML vs. voltage-mode (SST) driver

CML (Current mode logic)

- $1V_{ppd}$ swing
- Load current : +/- 5mA
- Total current: 20mA

SST (Source-Series Terminated)

- $1V_{ppd}$ swing
- Load current : +/- 5mA
- Total current: 5mA
- Power is proportional to output swing in both cases
- SST driver allows different termination options (differential, to GND, to VDD)

Half-rate SST Driver

- Transistors are small due to large gate overdrive
- Small input capacitance \rightarrow low power in pre-driver

C. Menolfi et al., "A 16Gb/s Source-Series Terminated Transmitter in 65nm SOI," ISSC 2007.

TX with 4-tap Feed-forward equalizer (FFE)

- 3.6 mW/Gbps @ 16 Gb/s and 1V swing

C. Menolfi et al., "A 16Gb/s Source-Series Terminated Transmitter in 65nm SOI," ISSC 2007.

28 Gb/s SST-TX

□ 4 tap bit-rate FIR feed-forward equalization (FFE)

□ Operating speed: up to 28Gb/s at VDD_{min}=0.95V

- □ +/- 20ps programmable True/Comp. output skew (enabled by SST concept)
- □ +/- 5% Duty-cycle control
- □ Adjustable driver impedance
- □ Full ESD compliance: 2kV HBM, 100V MM, 250V CDM
- □ High-frequency impedance matching with on-chip T-Coils, <-10dB return loss
- □ Power consumption = 7mW/Gbps (175mW)
- C. Menolfi et al., "A 28Gb/s Source-Series Terminated Transmitter in 32nm SOI", ISSCC 2012.

Ultra-Low-power Transmitter Concept

- Equalization done on RX side only
- Avoid TX-FFE
 - \rightarrow (1) Low power (1mW/Gbps for TX for 1V swing)
 - \rightarrow (2) Less amplification of **TX clock jitter** (see next slides)

Jitter Amplification in High-Loss Channels

 \rightarrow Jitter is distributed along multiple UIs \rightarrow Jitter amplification

Case II can be converted to Case I by

- (1) Continues time linear equalizer (CTLE) at RX side
- (2) Continues time linear equalizer (CTLE) at TX side
- (3) Discrete time RX FFE

But not: TX FFE (since it is agnostic of actual jitter value) → TX FFE sub-optimal, should be replaced with (1)-(3) if possible

Jitter Amplification: Comparison TX FFE vs. RX FFE

- 25% duty cycle variation applied = high frequency TX jitter at $f_b/2$
- Same equalizer coefficients for TX-FFE and RX-FFE

17

→RX-FFE suffers much less from TX jitter amplification than TX-FFE
→ Should make use of this fact in future standard definitions

Outline

- Introduction
 - High-Speed I/Os in the wireline link space
 - Equalization techniques
- Low-power Transmitter
 - SST vs. CML driver
 - Ultra-low power TX \rightarrow Avoid TX-FFE
- Low-power Receiver
 - Power-optimal amplification
 - Incomplete Settling / Integrating Buffer
 - Low-power DFE Architecture
 - Low-power clock generation
- Digital approaches
 - ADC
 - DFE implementations
 - Analog vs. Digital

Power optimal Amplification

SPA = Single-Pole AmpOMA = Optimized Multi-poleRSA = Regenerative Amp

- Energy/bit = Power * Delay
- Regenerative amplification most power efficient

J. Wu and B. Wooley, "A 100-MHz Pipelined CMOS Comparator," JSSC 1988.

CML vs. StrongARM (=DCVS) comparator latch

- For V_{dd}=1V transistors are in similar operating point (V_{qs}=V_{ds}=0.5V)
- CML latch achieves smallest τ_i when $R=2/gm_n$
- StrongARM latch intrinsically faster
- P/N ratio was >2, now approaching 1 due to strain engineering

CML vs. StrongARM Latch Energy Consumption

- CML latch optimized for speed or power
- Comparison for given T_{cycle} and amplification A = exp(5)
- StrongARM latch ≈2x as power efficient at T_{cycle}=100ps

Incomplete Settling \rightarrow Integrating buffer

- First, introduce sampling & reset in data path
- For given C_L
 - > $T=R_LC_L$ is varied by varying load resistance R_L
 - Power and noise are function of normalized settling time t_s/τ
 - > Power can be reduced significantly for $R_L \rightarrow \infty$, \rightarrow integrator)
- But: Noise rises significantly when $t_s/\tau < 1.5$
- → Can drive higher load at same noise with lower power

E. Iroaga and B. Murmann, "A 12-Bit 75-MS/s Pipelined ADC Using Incomplete Settling", JSSC 2007.

Low-Power Decision Feedback Equalizer (DFE)

- DFE principle of operation
 - > Direct DFE
- Low-power DFE
 - > Speculative DFE
 - Integrating DFE
 - Switched-cap feedback
- Low-power DFE at high-speed (28 Gbps)
 - Integrating DFE with fast switched-cap path and 3-tap speculation

Principle of DFE

$$V_{int} = AV_{in} + d_{n-4} + h_4 + \dots + d_{n-15} + h_{15}$$

- Fundamental problem
 - > Have to close the to timing loop in the DFE in 1 UI
- Low-power solutions : Relax timing \rightarrow lower supply voltage
 - > Use speculative DFE (see next slide)
 - ▷ Improve speed of DFE feedback → switched-cap feedback

DFE with **one** speculative tap

Speculation in DFE

25

CTLE + 1-tap speculative DFE results in power-efficient solution

- Good solution for smooth channels
- Avoids analog DFE summation
- Power = 0.7pJ/bit @ 20Gb/s

J. Proesel et al., VLSI 2011

Summation node: Current-Integrating DFE

Integrating buffer instead of resistively loaded buffer

\rightarrow Lower power

1.4 pJ/bit for 2 taps, 90nm CMOS

M. Park, et al., "A 7 Gb/s 9.3 mW 2-Tap Current Integrating DFE Receiver", ISSCC 2007.

IBM

Integrating DFE with I-feedback or switched-cap feedback

I- feedback [Parks and Bulzacchelli, ISSCC 2007] Switched-cap feedback SC-DFE (VLSI 2011)

- I-feedback is replaced with charge feedback \rightarrow SC-DFE
- Enables faster feedback loop (see next slide)

T. Toifl et al. "A 2.6mW/Gbps 12.5Gbps RX with 8-tap Switched-Cap DFE in 32nm CMOS", VLSI 2012

DFE: Current feedback vs. switched-cap feedback

Current feedback: previous symbol decision must arrive before integration

SC-feedback: previous symbol decision may arrive later → more margin

SC-DFE DAC Implementation and Measurement

- ±63 steps (6bit+sign) for taps 2-8
- 1 LSB = 250aF
- Excellent linearity
- Very Small area (no I-DAC needed)

- Caps made of min finger M1+M2
- Size of entire SC-DFE tap < 70um² in 32nm (including DAC)

Low-power DFE at 28 Gbit/s

- 28 Gbps : 1UI = 35ps
 - > Half-rate receiver reaches limit
 - Hard to achieve required amplification in integrator
 - 14GHz CMOS clocking difficult
 - Duty cycle hard to control, need small FO
 - Electromigration requires to add lots of metal in the layout
 - → Quarter-rate receiver more power-efficient
 - Single-tap speculative DFE too slow
 - Feedback time only t_{fb}=70ps
 - \rightarrow Three-tap speculation relaxes timing (t_{fb}=210ps)

 \rightarrow Can reduce supply voltage and use higher fan-out

3 Tap Speculation

- Now 8 latches
- Power ~ 150fJ/bit per latch → moderate penalty
- Critical path now 4UIs
- → Timing relaxed by 3UI 3t_{MUX}

DFE + Demux slice (1 slice of 4 total)

Actually 10 comparator latches per slice : 8 active + 2 used for calibration

Layout and power breakout @ 30Gb/s

Total: 92mW = 3.1mW/Gbps

Core DFE size = 200x90µm

Need to calibrate 40 comparator offsets and 48 DFE taps

T. Toifl, et al., "A 3.1mW/Gbps 30Gbps Quarter-Rate Triple-Speculation 15-tap SC-DFE RX Data Path in 32nm CMOS", VLSI 2012.

Rise Time Fall Time Jitter RMS Jitter p-p **₽eriod** 207.00 mV 219.10 mV 426.10 mV More (1 of 2) PRBS 31, No TX FFE 0 -2 -4 -6 -8 -10

50

Phase position [%UI]

75

100

25

-12

0

Elle Control Setup Measure Calibrate Utilities Help

06 Jun 2012 23:23 ____

TX FFE = [0 67 -29]

Power =92mW @ V_{DD}=1.15V = 3.1pJ/bit

Low-power RX clock generation

Clock generation for quarter-rate CDR system

- > Phase-programmable PLL (P-PLL)
- > Design example:
 - 40Gb/s RX using P-PLL

IBM

Quarter-rate Clock and Data Recovery

Quarter-rate Dual-loop architecture

Previous solution

Phase rotators:

- Area

- Power
- Mismatch
- Need at least 2 ref phases

Quarter-rate Dual-loop architecture

- Phases can be programmed by digital value \rightarrow Enables digital CDR loop
- Provides tight lock to high-reference frequency \rightarrow low jitter

40 Gb/s CDR Architecture using P-PLL

[37] T. Toifl et al., "A 72 mW 0.03 mm² inductorless 40 Gb/s CDR in 65 nm SOI CMOS," ISSCC 2007.

Chip Photograph and Layout of 40Gb/s RX

- Power : 1.8pJ/bit @ 40 Gbps
- Area: <0.03mm² in 65nm CMOS, no inductors uses

Outline

- Introduction
 - High-Speed I/Os in the wireline link space
 - Equalization techniques
- Low-power Transmitter
 - SST vs. CML driver
 - Ultra-low power TX \rightarrow Avoid TX-FFE
- Low-power Receiver
 - Power-optimal amplification
 - Incomplete Settling / Integrating Buffer
 - Low-power DFE Architecture
- Digital approaches
 - ADC
 - **DFE** implementations
 - Analog vs. Digital

ADC-based I/Os

- New standards emerging operating with PAM-4
 - IEEE 802.3bj (100Gb Ethernet over backplane)
 - PAM-4 mode for high channel loss (>40dB)
- Requirements for ADC
 - Rather low resolution (<5bits)
 - Low latency (for closing CDR loop)
 - \rightarrow Flash ADC
 - High conversion rates
 - → Interleave Flash ADC
 - \rightarrow Low input capacitance required

Example: Low-power flash ADC with small input cap

Low-power flash ADC with small input cap

- Integrating buffer drives big load with small input capacitance

- Comparator slice consists of offset-adjustable SenseAmp latch (no reference ladder required)

Low-power flash ADC results

120 µm

Technology	32nm CMOS SOI	
Sampling frequency	5GHz	
ENOB @ DC	4.4	
ENOB @ fs/2	4.1	
DNL, INL	<0.3 LSB, <0.3 LSB	
Power consumption	19mW @ 1V supply	
FOM	230fJ/conversion step	
Input cap	50fF	

 \rightarrow ADC cell can be time-interleaved to achieve higher conversion rates

Digital DFE

- Relatively simple and low-power
 - Case I : low speed (<5Gbit/s)
 - DFE loop can be implemented by digital adder
 - Critical path is adder and comparator
 - Taps can also be combined in LUT

Digital DFE

- Relatively simple and low-power
 - Case II : small number of DFE taps ($n \le 5$)
 - Digital loop unrolling requires 2ⁿ comparators

- Comparator power: <100uW/Gbps
- Critical path: 2:1 MUX

- Hard problem is long DFE (eg 15 taps) at high speed (eg 28Gb/s)

Analog vs. Digital: RX power comparison

- Power: Optimized Analog RX with 15-tap DFE
 - Clock path: 2mW/Gbps
 - Linear equalizer (CTLE): 1.5mW/Gbps
 - DFE: 3mW/Gbps for 15-tap DFE @ 25Gb/s
 - Total: 6.5 mW/Gbps
- Power: ADC based RX with 15-tap digital DFE
 - Clock path: 1mW/Gbps (no edge samples required with Mueller-Müller CDR)
 - Linear equalizer (CTLE): 1.5mW/Gbps
 - ADC: 4mW/Gbps
 - DSP: FFE: 3mW/Gbps + DFE: 3mW/Gbps
 - Total: 12.5mW/Gbps

\rightarrow ADC power alone is \geq DFE power

Analog will stay lowest power solution for DFE equalization
 Why ? Analog well suited for DFE: fast summation with moderate accuracy
 BUT: gap will shrink as technology scales

Summary

Low-power TX techniques

- SST drivers: low-power, multi-standard
- Avoid TX-FFE: Low power, less jitter amplification

Low-power RX Techniques

- Regenerative amplification, StrongARM (DCVS) latch
- Integrating DFE using switched-cap feedback
- P-PLL phase generation

Digital (ADC-based) I/O approaches

- ADC : Flash ADC <4mW/Gbps
- Analog is lower power solution for long DFE at high speeds
- High-speed I/Os will follow route of Gb Ethernet over UTP

Acknowledgements

IBM

- Christian Menolfi
- Peter Buchmann
- Marcel Kossel
- Matthias Brändli
- Thomas Morf
- Pier Andrea Francese
- John Bulzacchelli
- Troy Beukema
- Tod Dickson
- Dan Dreps
- Steve Baumgartner
- Fran Keyser
- John Berqkvist
- Martin Schmatz

Miromico

- Robert Reutemann
- Michael Ruegg
- Daniele Gardellini
- Andrea Prati
- Giovanni Cervelli

Thank you for your attention!

Additional Slides

IBM

Summary of Equalization Techniques

Feed-forward Equalization (FFE)

- FIR filter, usually implemented at TX side

Continuous-Time Linear Equalizers (CTLE)

 Increase high-frequency gain and/or decrease low-frequency gain to compensate for low-pass channel characteristics.

Decision Feedback Equalization (DFE)

Feed back previous bit decisions to cancel postcursor ISI caused by those bits.

Source-synchronous Links Application Area

Important parameters:

- throughput (Gb/s per pin)
- power (mW per Gb/s or equivalently pJ per bit)
- limited die area (µm² per Gb/s, fit beneath C4 balls)
- Latency (memory links, SMP links)

Switched-cap DFE principle

- Current feedback replaced by charge feedback
- Capacitive DAC (6 bits+sign, +/-0..63): 4 binary (1,2,4,8) + 3 bits therm-coded (16,16,16)
- unused caps disconnected by PFET pass transistors (reduced cap loading)
- Transistors used as switches (digital design style, don't care about 'analog' parms like gm, gds)
- DFE timing margin is improved wrt to integrating DFE with current feedback
- Addition of charges is highly linear: needed for large number (e.g. 20) DFE or X-talk cancellation

TX Architecture

Half-rate architecture

courtesy Christian Menolfi

4-tap feed-forward equalizer (FFE)

[1],[5]

Programmable output impedance

Jitter Amplification in High-Loss Channels

- Jitter can be approximated by Dirac impulse at edge position [1]

- Jitter is then converted to voltage noise in the sampling point

[1] V. Stojanović et al., "Optimal Linear Precoding with Theoretical and Practical Data Rates in High-Speed Serial-Link Backplane Communication", ICC 2004

Sampling in Data Path vs. continuous time data path

- Sampling is done by T/H at the input
- Total input capacitance is N·C_s/2
- Advantages
 - Signal processing now in discrete time domain
 - -> Reduced bandwidth requirements due to
 - -> Sub-rate
 - -> Can use **reset** to erase history
 - -> Buffers can use incomplete settling or integration

P-PLL – Key points:

- Advantages
 - Clocks from VCO go directly into the latches
 - No need for phase rotators
 - Clock path is very short
 - Phase-rotation with XOR phase detectors is inherently linear
 - High-frequency noise on input clock signal is filtered out
- Disadvantages
 - Phase noise is accumulated due to PLL operation
 But: PLL bandwidth is extremely high (>1 GHz for 10GHz clock)
 → Noise is attenuated to large extent
 - Phase-rotation now in feedback-path

But: No influence on CDR due to high PLL bandwidth

SST- Transmitter

- [1] C. Menolfi, T. Toifl, P. Buchmann, M. Kossel, T. Morf, J. Weiss, M. Schmatz, "A 16Gb/s Source-Series Terminated Transmitter in 65nm CMOS SOI," ISSCC Dig. Tech Papers, pp. 446-447, Feb. 2007.
- [2] M. Kossel, C. Menolfi, J. Weiss, P. Buchmann, G. von Bueren, L. Rodoni, T. Morf, T. Toifl, M. Schmatz, "A T-Coil-Enhanced 8.5Gb/s High-Swing source-Series-Terminated Transmitter in 65nm Bulk CMOS", IEEE Journal of Solid-State Circuits, Vol. 43, pp. 2905-2920, Dec. 2008.
- [3] R. Philpott, J. Humble, R. Kertis, K. Fritz, B. Gilbert, E. Daniel, "A 20Gb/s SerDes transmitter with adjustable source impedance and 4-tap feed-forward equalization in 65nm bulk CMOS," IEEE Custom Integrated Circuits Conference (CICC), pp.623-626, 21-24, 2008.
- [4] W. Dettloff, J. Eble, Lei Luo, P. Kumar, F. Heaton, T. Stone, B. Daly, "A 32mW 7.4Gb/s protocol-agile sourceseries-terminated transmitter in 45nm CMOS SOI," ISSCC Dig. Tech Papers, pp.370-371, 7-11 Feb. 2010.
- [5] C. Menolfi, T. Toifl, M. Rueegg, M. Braendli, P. Buchmann, M. Kossel, T. Morf, "A 14Gb/s high-Swing Thinoxide device SST TX in 45nm CMOS SOI", ISSCC 2011.

Latch Modeling and Optimization

- [6] B. Wicht, T. Nirschl, D. Schmitt-Landsiedel, "Yield and Speed Optimization of a Latch-Type Voltage Sense Amplifier", IEEE Journal of Solid-State Circuits, vol. 39, pp. 1148 - 1158, July 2004.
- [7] T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, M. Schmatz, "A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology," IEEE Journal of Solid-State Circuits, Vol. 41, pp. 954 - 965, April 2006.
- [8] P. Haydari, R. Mohanavelu, "Design of Ultrahigh-Speed Low-Voltage CMOS CML Buffers and Latches", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.12, No. 10, October 2004.
- [9] T. Chalvatzis, K.H.K. Yau, P. Schvan, M.T. Yang, S.P. Voinigescu, "A 40-Gb/s Decision Circuit in 90-nm CMOS," Proceedings of the 32nd European Solid-State Circuits Conference, Vol. 32, pp. 512 - 515, September 2006.
- [10] Y. Okaniwa, H. Tamura, M. Kibune, D. Yamazaki, T. Cheung, J. Ogawa, N. Tzartzanis, W. W. Walker, and T. Kuroda, "A 40-Gb/s CMOS clocked comparator with bandwidth modulation technique," IEEE Journal of Solid-State Circuits, vol. 40, pp. 1680 1687, August 2005.
- [11] P. Nuzzo, F. De Bernardinis, P. Terreni, G. Van der Plas, "Noise Analysis of Regenerative Comparators for Reconfigurable ADC Architectures", IEEE Trans. on Circuits and Systems I, Vol. 55, No 6, pp 1441-1454, July 2008.
- [12] J. Kim. B. Leibowitz, J. Ren, C. Madden, "Simulation and Analysis of Random Decision Errors in Clocked Comparators", IEEE Trans on Circuits and Systems I, Vol. 56, pp 1844-1857, August. 2009.
- [13] M. Jeeradit, J. Kim, B. Leibowitz, P. Nikaeen, V. Wang, B. Garlepp, C. Werner, "Characterizing Sampling Aperture of Clocked Comparators", pp 68-69, IEEE Symposium on VLSI Circuits, June 2008.

Low-power techniques

- [14] J. Wu and B. Wooley., "A 100-MHz Pipelined CMOS Comparator," IEEE Journal of Solid-State Circuits, Vol. 23, pp. 1379 1385, December 1988.
- [15] M. Choi, A. Abidi, "A 6-b 1.3-Gsample/s A/D converter in 0.35-um CMOS," IEEE Journal of Solid-State Circuits, Vol. 36, pp. 1847 - 1858, Dec 2001.
- [16] E. Iroaga and B. Murmann, "A 12-Bit 75-MS/s Pipelined ADC Using Incomplete Settling", IEEE Journal of Solid-State Circuits, Vol. 42, pp. 784 - 756, April 2007.
- [17] M. Park, J, Bulzacchelli, M. Beakes, D. Friedman, "A 7Gb/s 9.3mW 2-Tap Current-Integrating DFE Receiver", ISSCC Dig. Tech Papers, pp. 230-231, Feb. 2007.
- [18] T. Dickson, J. Bulzacchelli, D. Friedman, "A 12-Gb/s 11-mW Half-Rate Sampled 5-Tap Decision Feedback Equalizer With Current-Integrating Summers in 45-nm SOI CMOS Technology", IEEE Journal of Solid-State Circuits, pp 1298-1305, Vol. 44, April 2009
- [19] K. Fukuda et al,"A 12.3-mW 12.5Gb/s Complete Transceiver in 65-nm CMOS Process", IEEE Journal of Solid-State Circuits, Vol. 45, Dec. 2010

DFE Implementations

- [20] R. Payne, B. Bhakta, S. Ramaswamy, S. Wu, J. Powers, P. Landman, U. Erdogan, A. Yee, R. Gu, L. Wu, B. Parthasarathy, K. Brouse, W. Mohammed, K. Heragu, V. Gupta, L. Dyson, W. Lee "A 6.25Gb/s Binary Adaptive DFE with First Post-Cursor Tap Cancellation for Serial Backplane Communications", ISSCC Dig. Tech Papers, pp. 68-69, Feb. 2005.
- [21] B. Leibowitz, J. Kizer, H. Lee, F. Chen, A. Ho, M. Jeeradit, A. Bansal, T. Greer, S. Li, R. Farjad-Rad, W. Stonecypher, Y. Frans, B. Daly, F. Heaton, B. W. Garlepp, C. W. Werner, N. Nguyen, V. Stojanović, J L. Zerbe, "A 7.5 Gb/s 10-Tap DFE Receiver with First Tap Partial Response, Spectrally Gated Adaptation, and 2nd-Order Data Filtered CDR," ISSCC Dig. Tech Papers, pp. 228-229, Feb. 2007.
- [22] T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, "A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization," IEEE Journal of Solid-State Circuits, vol. 40, pp. 2633 2645, December 2005.
- [23] J. F. Bulzacchelli, M. Meghelli, S. V. Rylov, W. Rhee, A. V. Rylyakov, H. A. Ainspan, B. D. Parker, M. P. Beakes, A. Chung, T. J. Beukema, P. K. Pepeljugoski, L. Shan, Y. H. Kwark, S. Gowda, and D. J. Friedman, "A 10-Gb/s 5-tap DFE/4-tap FFE transceiver in 90-nm CMOS technology," IEEE Journal of Solid-State Circuits, vol. 41, pp. 2885 - 2900, December 2006.
- [24] A. Emami-Neyestanak, A. Varzaghani, J. Bulzacchelli, A., C. K. Ken Yang and D. Friedman, "A Low-Power Receiver with Switched-Capacitor Summation DFE", Symp.VLSI Circuits Dig. Tech. Papers, June 2006.
- [25] K. J. Wong, A. Rylyakov, and C. K. Ken Yang, "A 5-mW 6-Gb/s quarter-rate sampling receiver with a 2-tap DFE using soft decisions," Symp. VLSI Circuits Dig., pp. 190 - 191, June 2006.
- [26] A. Garg, A. C. Carusone, and S. P. Voinigescu, "A 1-tap 40-Gb/s look-ahead decision feedback equalizer in 0.18µm SiGe BiCMOS technology," IEEE Journal of Solid-State Circuits, vol. 41, pp. 2224 - 2232, October 2006.

Source-Synchronous RX /Clean up PLL/ P-PLL

- [27] T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, M. Schmatz, "A 0.94-ps-RMS-jitter 0.016-mm² 2.5-GHz multiphase generator PLL with 360° digitally programmable phase shift for 10-Gb/s serial links", IEEE Journal of Solid-State Circuits, Vol. 40, pp. 2700 - 2712, Dec 2005.
- [28] E. Prete, D. Scheideler, A. Sanders, "A 100mW 9.6Gb/s Transceiver in 90nm CMOS for Next- Generation Memory Interfaces," ISSCC Dig. Tech. Papers, vol. 49, pp. 88-89, Feb. 2006.
- [29] R. Palmer, J. Poulton, W. J. Dally, J. Eyles, A. M. Fuller, T. Greer, M. Horowitz, M. Kellam, F. Quan, F. Zarkeshvari, "A 14mW 6.25Gb/s Transceiver in 90nm CMOS for Serial Chip-to-Chip Communications", ISSCC Dig. Tech Papers, pp. 440-441, Feb. 2007.
- [30] J. Poulton, R. Palmer, A.M. Fuller, T. Greer, J. Eyles, W.J. Dally, M. Horowitz, "A 14-mW 6.25-Gb/s Transceiver in 90-nm CMOS", IEEE Journal of Solid-State Circuits, vol. 42, pp. 2745 - 2755, December 2007.
- [31] R. Reutemann, M. Ruegg, F. Keyser, J. Bergkvist, D. Dreps, T. Toifl, M. Schmatz, " 4.5 mW/Gb/s 6.4 Gb/s 22+1-Lane Source Synchronous Receiver Core With Optional Cleanup PLL in 65 nm CMOS", IEEE Journal of Solid-State Circuits, Vol. 45, pp. 2850 - 2860, Dec 2010.
- [32] A. Agrawal, A. Lie, P. Kumar Hanumolu, G. Wei, "An 8 x 5 Gb/s Parallel Receiver With Collaborative Timing Recovery", IEEE Journal of Solid-State Circuits, vol. 44, pp. 3120 3130, Nov. 2009.
- [33] B. Leibowitz, R. Palmer, J. Poulton, Y. Frans, S. Li, J. Wilson, M. Bucher, A. Fuller, J. Eyles, M. Aleksic, T. Greer, N. Nguyen, "A 4.3 GB/s Mobile Memory Interface With Power-Efficient Bandwidth Scaling", IEEE Journal of Solid-State Circuits, vol. 45, pp. 889 898, April 2010
- [34] N. Kurd, S. Bhamidipati, C. Mozak, J. Miller, P. Mosalikanti, et al. ", A Family of 32 nm IA Processors," IEEE Journal of Solid-State Circuits, vol.46, no.1, pp.119-130, Jan. 2011

25-40 Gbps CDR Circuits

- [35] J. Lee, B. Razavi, "A 40-Gb/s clock and data recovery circuit in 0.18-µm CMOS technology," IEEE Journal of Solid-State Circuits, vol. 38, pp. 2181 - 2190, Dec. 2003.
- [36] C. Kromer, G. Sialm, C. Menolfi, M. Schmatz, F. Ellinger, H. Jackel "A 25Gb/s CDR in 90nm CMOS for High-Density Interconnects," ISSCC Dig. Tech Papers, pp. 326-327, Feb. 2006.
- [37] T. Toifl, C. Menolfi, P. Buchmann, C. Hagleiter, M. Kossel, T. Morf, J. Weiss, M. Schmatz, "A 72mW 0.03mm² Inductorless 40Gb/s CDR in 65nm SOI CMOS", ISSCC Dig. Tech Papers, pp. 410-411, Feb. 2007.
- [38] D. Kucharski, K. Kornegay, "2.5 V 43-45 Gb/s CDR Circuit and 55 Gb/s PRBS Generator in SiGe Using a Low-Voltage Logic Family," IEEE Journal of Solid-State Circuits, vol. 41, pp. 2154 - 2165, Sept. 2006.
- [39] N. Nedovic, N. Tzartzanis, H. Tamura, F. Rotella, M. Wiklund, J. Ogawa, W. Walker, "A 40-44Gb/s 3x Oversampling CMOS CDR/1:16 DEMUX," ISSCC Dig. Tech Papers, pp. 224-225, Feb. 2007.
- [40] C. Liao, S. Liu; , "A 40 Gb/s CMOS Serial-Link Receiver With Adaptive Equalization and Clock/Data Recovery," IEEE Journal of Solid-State Circuits, vol.43, no.11, pp 2492-2502, Nov. 2008.
- [41] S. Kaeriyama, Y. Amamiya, H. Noguchi, Z. Yamazaki, et al. "A 40 Gb/s Multi-Data-Rate CMOS Transmitter and Receiver Chipset With SFI-5 Interface for Optical Transmission Systems," IEEE Journal of Solid-State Circuits, vol.44, no.12, pp.3568-3579, Dec. 2009.
- [42] N. Nedovic, A. Kristensson, S. Parikh, S. Reddy et al., "A 3 Watt 39.8–44.6 Gb/s Dual-Mode SFI5.2 SerDes Chip Set in 65 nm CMOS," IEEE Journal of Solid-State Circuits, vol.45, no.10, pp.2016-2029, Oct. 2010.

High-Speed ADC and Digital I/O Implementations

- [43] H. Chung, A. Rylyakov, Z. T. Deniz, J. Bulzacchelli, W. Gu-Yeon, and F. Daniel, "A 7.5-GS/s 3.8-ENOB 52-mW flash ADC with clock duty cycle control in 65 nm CMOS," in Proc. Symp. VLSI Circuits, 2009, pp. 268–269.
- [44] K. Deguchi, N. Suwa, M. Ito, T. Kumamoto, and T. Miki, "A 6-bit 3.5-GS/s 0.9-V 98-mW flash ADC in 90-nm CMOS," IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2303–2310, Oct. 2008.
- [45] S. Sarvari, T. Tahmoureszadeh, A. Sheikholeslami, H. Tamura, M. Kibune, "A 5Gb/s Speculative DFE for 2x Blind ADC-based Receivers in 65-nm CMOS", Symp.VLSI Circuits Dig. Tech. Papers, June 2010.
- [46] C. Huang, C. Wang, J. Wu, "A CMOS 6-Bit 16-GS/s Time-Interleaved ADC with Digital Background Calibration", Symp.VLSI Circuits Dig. Tech. Papers, June 2010.
- [47] M. El-Chammas, B. Murmann, "A 12-GS/s 81-mW 5-bit Time-Interleaved Flash ADC with Background Timing Skew Calibration", Symp.VLSI Circuits Dig. Tech. Papers, June 2010.
- [48] E. Chen, C. Ken Yang, "ADC-Based Serial I/O Receivers", IEEE Transactions on Circuits and Systems I, Vol. 57, No. 9, Sept. 2010.
- [49] M. Harwood, N. Warke, R. Simpson, T. Leslie et al., "A 12.5 Gb/s SerDes in 65nm CMOS using a baud-rate ADC with digital equalization and clock recovery," ISSCC Dig. Tech Papers, pp. 436-591, Feb. 2007.
- [50] H. Yamaguchi, H. Tamura, et al, "A 5 Gb/s transceiver with an ADC-based feedforward CDR and CMA adaptive equalizer in 65 nm CMOS," ISSCC Dig. Tech Papers, pp. 168–169, Feb. 2010.
- [51] O. Tyshchenko, A. Sheikholeslami, H. Tamura, M. Kibune, H. Yamaguchi, J. Ogawa, " A 5-Gb/s ADC-Based Feed-Forward CDR in 65 nm CMOS", IEEE J. Solid-State Circuits, vol. 45, no. 10, pp. 1091–1098, June 2010.

Link modelling

- [52] V. Stojanović, A. Amirkhany, M. Horowitz, "Optimal Linear Precoding wit Theoretical and Practical Data Rates in High-Speed Serial-Link Backplane Communication", International Conference on Communications (ICC), 2004.
- [53] G. Balamurugan, N. Shanbag, "Modeling and Mitigation of Jitter in Multi-Gbps Source-Synchronous I/O Links", Proceedings of the 21st International Conference on Computer Design (ICCD), 2003.
- [54] G. Balamurugan, B. Caspar, J. Jaussi, M. Masuri, F. O'Mahony, "Modeling and Analysis of High-Speed I/O Links", IEEE Transactions on Advanced Packaging, Vol. 32, Feb. 2009.
- [55] J. Ren, D. Oh, S. Chang, "Hybrid Statistical and Time-Domain Simulation Methodology for High-Speed Links", DesignCon 2010.
- [56] S. Chun, G. Peterson, R. Mandrekar, D. Dreps, M. Sorna, T. Beukema, "Method to Determine Optimum Equalization for Maximum Eye in High-Speed Computer System", IEEE 19th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), vol., no., pp.293-296, Oct. 2010.

Additional/General Papers

- [57] M. Lee, W. Dally, P. Chiang, "Low-power area-efficient high-speed I/O circuit techniques," IEEE Journal of Solid-State Circuits, vol. 35, pp. 1591 - 1599, November 2000.
- [58] J. Kim, M. Horowitz," Adaptive supply serial links with sub-1-V operation and per-pin clock recovery," IEEE Journal of Solid-State Circuits, vol. 37, pp. 1403 1413, November 2002.
- [59] K. J. Wong, H. Hatamkhani, M. Mansuri, and C. K. Ken Yang, "A 27-mW 3.6-Gb/s I/O transceiver," IEEE Journal of Solid-State Circuits, vol. 39, pp. 602 - 612, April 2004.
- [60] B. Casper, J. Jaussi, F. O'Mahony, M. Mansuri, K. Canagasaby, J. Kennedy, E. Yeung, and R. Mooney, "A 20Gb/s forwarded clock transceiver in 90nm CMOS," IEEE International Solid-State Circuits Conference, vol. XLIX, pp. 90 - 91, February 2006.
- [61] R. Gonzalez, B. Gordon, and M. A. Horowitz, "Supply and threshold voltage scaling for low power CMOS," IEEE Journal of Solid-State Circuits, vol. 32, pp. 1210 1216, August 1997.

Acronyms

ASST	At-Speed Structural Test
BER	Bit Error Rate
CDR	Clock and Data recovery
CML	Current Mode Logic
CTLE	Continuous Time Linear Equalizer
DCVS	Differential Cascode Voltage Switch (circuit)
DFE	Decision Feedback Equalizer
DLL	Delay Locked Loop
FFE	Feed-forward Equalizer
FFT	Fast Fourier Transform
FS-CMOS	Full-swing CMOS (=inverter based clocking)
INL	Integral Non-Linearity
ISI	Intersymbol Interference
LSSD	Level Sensitive Scan Design
PLL	Phase-Locked Loop
P-PLL	Phase Programmable PLL
PPF	Poly-phase filter
RX	Receiver
SC-DFE	Switched-Cap DFE
S.E.	Single-Ended
SOI	Silicon On Insulator
SST	Source-Series Terminated
VCO	Voltage Controlled Oscillator
T/H	Track and Hold
ТХ	Transmitter