

Improving the performance of the LFC

Lana Abadie, CERN, IT-GD JRA1 , 24-26 Oct 2007, CERN

www.eu-egee.org

EGEE-II INFSO-RI-031688

EGEE and gLite are registered trademarks

- LFC too slow ? What parameters have an impact?
 - Hardware quality
 - Oracle usually more scalable and faster for large tables
 - Load on the LFC server
 - Time needed to process and execute the job on the server: some requests are more time-consuming
 - RTT : the further away the LFC is, the slower it will be
 - Security issue (authentication) : the more secure, the slower
- What can be done to tune the LFC performance
 - Avoiding the time spent for authentication -> session
 - Avoiding the RTT -> bulk methods

- Authentication done once, at the beginning of the session
 - TCP connection kept alive
 - All the LFC operations performed in a session will use the same TCP connection
 - 8 RTT during authentication !
- A session is automatically dropped by the server: the session must be idle for less than 60 seconds
- Usable from the LFC C and python API
 - rescode = lfc_startsess (lfc_host, "Starting adding replicas");
 // adding replicas to the LFC
 - (void) lfc endsess ();
- Performance : x10-15 times faster

Reduce the number of RT

- Very useful when the catalog is remote

• ATLAS request : bulk methods

- Getting the list of replicas
- Passing a list of guids to be deleted
- Passing a list of Ifns with some filtering options to be deleted
- Performance * 15-20 times faster

LFC bulk methods

Enabling Grids for E-sciencE

- //deleting replicas (if force=1) and LFNs if mapped to one of guid in the list
 of guids
- int DLL_DECL lfc_delfilesbyguid(int nbguids, const char **guids, int force, int *nbstatuses, int **statuses)

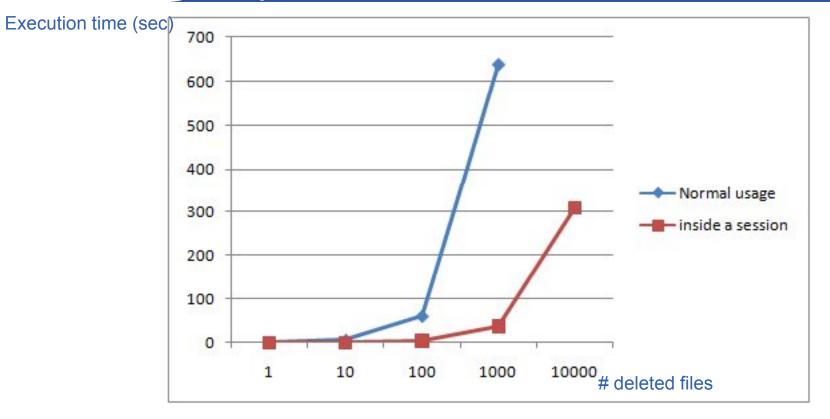
//deleting replicas (if force=1) and LFNs (specified by the **paths)

 int DLL_DECL lfc_delfilesbyname(int nbfiles, const char **paths, int force, int *nbstatuses, int **statuses)

 int DLL_DECL lfc_delfilesbypattern(const char *path, const char *pattern, int force, int *nbstatuses, struct Cns filestatus **statuses)

//deleting replicas stored on the given SE and associated with
one guid provided by the list of guids

 int DLL_DECL lfc_delreplicas(int nbguids, const char **guids, char *se, int *nbstatuses, int **statuses)


//list the content of the directory + replica info if matches the
pattern

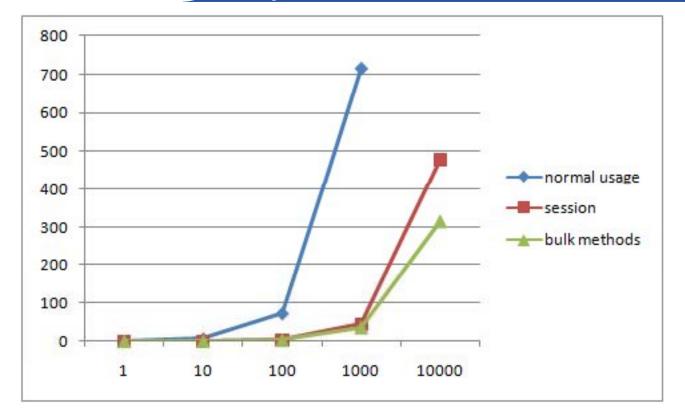
struct lfc_direnrep DLL_DECL * lfc_readdirxp(Cns_DIR *dirp, char *pattern,

Performance study 1/3

Enabling Grids for E-sciencE

LFC : prod-lfc-shared-central.cern.ch, oracle

Ping : 0.493 ms


Session : up to 20 times faster

Authentication /operation : ≈ 0.3 sec

Performance study 2/3

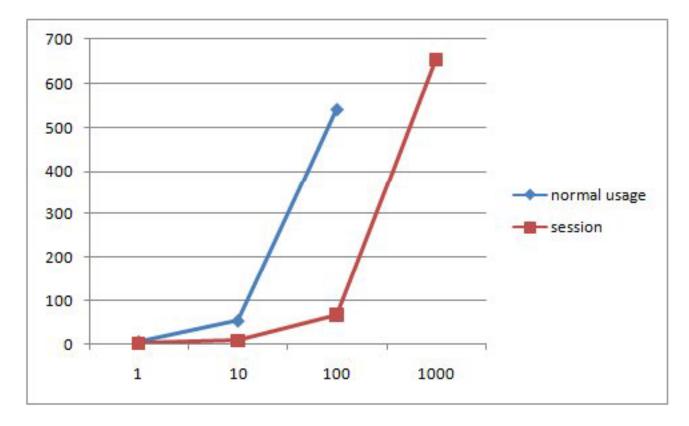
Enabling Grids for E-sciencE

LFC : Ixb0986v2.cern.ch : VM, no load, MySQL

Ping : 0.380 ms

Session : up to 20 times faster

Authentication /operation : ≈ 0.3 sec


The LFC production is faster -> hw quality, VM

EGEE-II INFSO-RI-031688

Performance study 3/3

Enabling Grids for E-sciencE

LFC : lfc.grid.sinica.edu.tw : production, MySQL

Ping : 312 ms

Session : up to 10 times faster

Authentication /operation : \approx 3 sec

Impact of the RTT

EGEE-II INFSO-RI-031688

- Usage of session and bulk methods
 - Performance is far better
 - Satisfaction from the LHC experiments
- Needs to make more tests for the bulk methods
 - Measurements with a remote LFC
 - Influence of the nb of guids given