

Enabling Grids for E-sciencE

Improving the quality of gLite software

Observations from SA3

Oliver Keeble CERN

www.eu-egee.org

What is quality?

- 'Good' software enables us to provide a 'good' service
 - ie 'good' for a particular purpose
- Implementation vs Design errors
- External (user facing)
 - usability
 - interaction, logging, errors
- Internal
 - portability, functionality, adherence to spec, maintainability
 - security, efficiency, time to deployment?
- Is it a matter of prioritisation?
 - Cost, speed, quality choose any two

Enabling Grids for E-science

- What is it possible to measure
 - Avoid looking under the streetlight
- We are not in a 'steady state'
 - Things are in flux
 - Fixing one problem allows us to reveal another
 - Test coverage is incomplete
 - Operational exposure is variable
 - Requirements change rapidly
- Measuring must not be too invasive
- Reliability
 - Service availability SA1
 - Disentangle software defects from other sources of instability

Entomology

Enabling Grids for E-science

Bugs

- Lots of problems consolidated in a bug
- One fault can produce a number of bugs (different symptoms)
- Feature requests
- Real use of this requires classification of each bug!
- What does a diminishing number of bugs mean?
 - Exhaustion of test coverage?
 - Diminishing usage?
 - Improving quality?

Testing & Certification

Enabling Grids for E-sciencE

- Controle Technique
- Testing in the right place
 - More efficient
 - Improves the release process
 - Does not create unrealisable expectations
- How do you know when something works?
 - without a specification
 - requirements change rapidly
 - the same code can suddenly become 'lower quality'