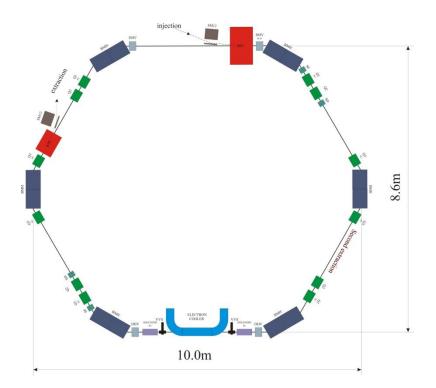
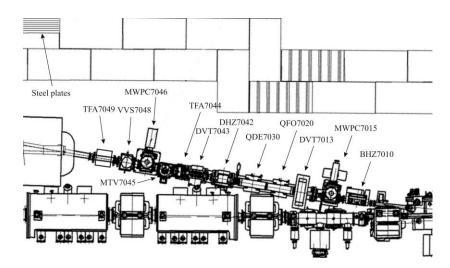

Present Transfer Line Status

Pavel Belochitskii BE/OP


ELENA layout in AD Hall

25 January 2012 CERN

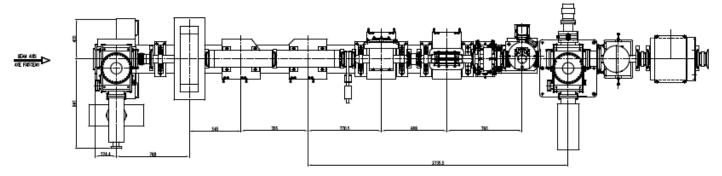
ELENA ring configuration


- Two straight sections without quadrupoles, for injection and for electron cooling
- Four straight sections, each includes 3 quadrupoles for beam focusing
- Injection and extraction made in a different section to facilitate beam transfer from AD to ELENA and from ELENA to experimental area
- Second extraction is foreseen for future experiments (Gbar experiment is approved by SPSC)

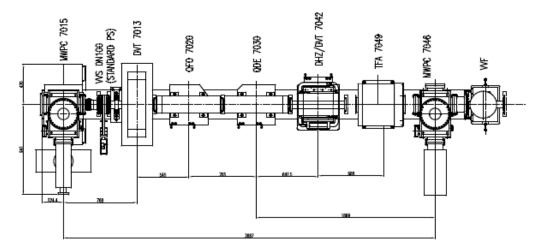
ELENA beam injection parameters

Momentum, MeV/c	100
Energy, MeV	5.3
Intensity of injected beam	$\sim 3 \times 10^7$
Number of injected bunches	1
Emittances (h/v), $\pi \cdot \text{mm} \cdot \text{mrad}$, [95%]	<15
Δp/p, [95%]	$2 \cdot 10^{-4}$
Bunch length, ns	<500

Beam transfer from AD to ELENA

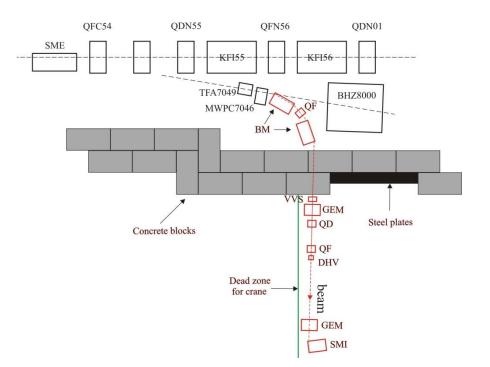

What should we modify in AD ejection line (7000 line):

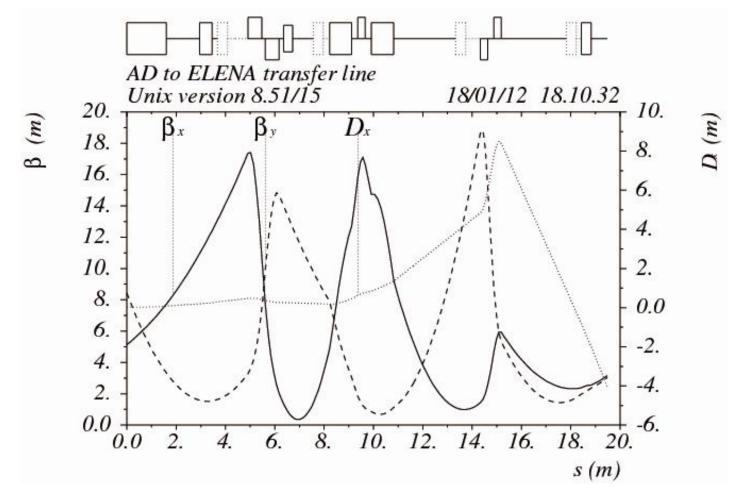
- place sector valve VVS32 between MWPC7015 and DVT7013 (possible)
- move dipole correctors 7042 and 7043 upstream (to be confirmed by vacuum specialists), build new combined corrector (proposed by T. Eriksson)
- remove proton transformer TFA7044 and MTV7045 (possible)
- To place current transformer TFA7049 before MWPC7046 (possible)
- To make small modification in vacuum equipment in this area (to be confirmed by vacuum specialists)


25 January 2012 CERN

Modification in AD 7000 line

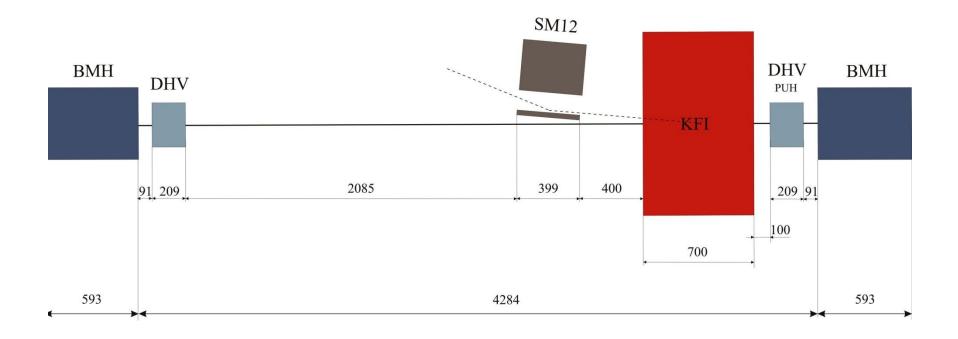
Today's layout


Proposed layout


25 January 2012 CERN

AD to ELENA transfer line

- To make 82° bend, two magnets will be placed upstream to the shielding of AD Hall
- 5 or 6 quads used for matching of the Twiss functions. Matching of dispersion is not possible, a small mismatch and the horizontal emittance blow up expected. Small momentum spread in AD beam required, no bunch rotation in AD, longer flat part for injection kicker
- The line layout and length limited strongly by layout (unfortunately)
- Special care should be given to a crossing of injection and extraction lines



AD to ELENA transfer line optics

25 January 2012 CERN

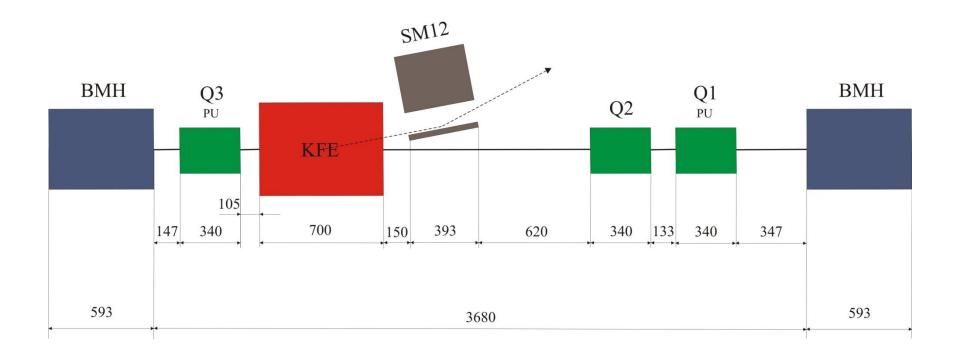
Injection into ELENA

Parameters of injection septum

Momentum, MeV/c	100
Deflection angle, mrad	303
Required ∫B·dl, T·m	0.101
Gap height, mm	74
Gap width between conductors, mm	135
Septum conductor thickness, mm	22.8
Magnetic length, mm	300
Magnet length (physical), mm	400
Good field region ($\pm 5 \cdot 10^{-3}$), mm	
Current (DC), A	991

Parameters of injection kicker

momentum, MeV/c	100
Revolution time, ns	955
Rise time, ns	300
Fall time, ns	300
Flat part, ns	~600
Required angle, mrad	84
Required ∫Bdl, G·m	280
Maximal ∫Bdl, G·m	313
Good field region ($\pm 5 \cdot 10^{-3}$), mm	70x40
Magnetic length, mm	432
Tank length, mm	700


Next steps

- Define modified 7000 line layout together with survey, vacuum and design office people
- Define preliminary layout of ELENA ring in AD Hall
- Define bending magnet parameters together with magnet group people
- Define vacuum equipment in AD to ELENA transfer line
- Make matching of Twiss functions between AD and ELENA
- Make estimation of possible beam blow up during injection due to (dispersion) mismatch
- Make estimation of possible beam blow up during injection due to injection kicker/septum errors

ELENA beam extraction parameters

Momentum range, MeV/c	13.7
Energy range, keV	100
Intensity of ejected beam	$1.8 imes 10^7$
Number of extracted bunches	1 to 4
Emittances (h/v), $\pi \cdot \text{mm} \cdot \text{mrad}$, [95%]	4 / 4
Δp/p after cooling, [95%]	10 ⁻⁴
Bunch length at extraction, m / ns	1.3/300

Extraction from ELENA in a short straight section

25 January 2012 CERN

Transfer line WS / Pavel Belochitskii 14

Extraction from ELENA in a short straight section: summary

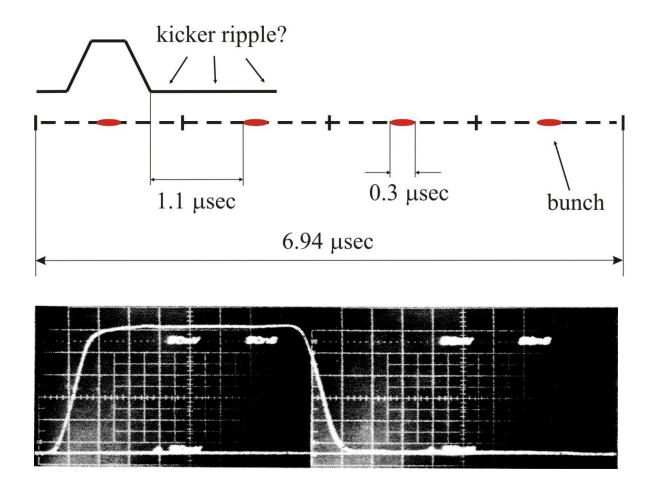
- Suitable for various optics
- Short space, big angles in deflecting elements required
- Strong kicker needed (δ_k =190 mrad), module of former AA injection kicker may be used. The beam deviation inside the kicker is 38.8mm, the beam size of ejected beam is

$$\sigma_x = [\varepsilon_x \beta_x + (\Delta p / p)^2]^{1/2} = [8 \cdot 5 + (3 \cdot 1)^2]^{1/2} = 7 mm$$

and the space for beam is $38.8+2\cdot(7+3)=58.8 \text{ mm} (3 \text{ mm} added \text{ for trajectory} error)$, which fits good field region. When optics will be finalized, this value should be revised.

• Magnetic septum SMH12 may be used (HxV=135x74 mm), δ_s =303 mrad -> 60 mm needed for trajectory deviation and 75 mm are available for ejected beam

25 January 2012 CERN


Some parameters of ejection kicker (PS/BT/Note 87-5)

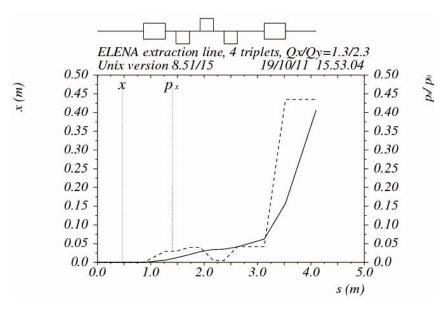
Kicker parameters

Field uniformity

р	MeV/c	13.7	⁵ 8, %		
w (w _{eff})	mm	110 (132)	103 _		
h	mm	45	102 _	٨	1
L_{magn} / L_{tank}	mm	432/700	101 _		1
$\int \mathbf{B} \cdot d\mathbf{l} / \int \mathbf{B} \cdot d\mathbf{l}_{max}$	G·m	93/313	100		
$\int B_{rem} \cdot dl$	T·m	$0.75 \cdot 10^{-4}$	99 _		Ň
Rise time (2-98)%	ns	300	98 _	• axis	
Fall time (98-2)%	ns	300		¢ ±10 mm x ±18 mm	n .
Flat top length	ns	400			

Effect of the kicker ripple (4 bunches case)

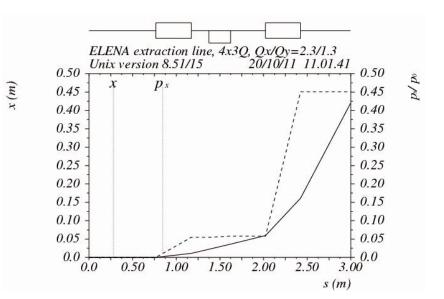
25 January 2012 CERN


Effect of the kicker remanent field

• Kick applied to circulated bunches is noticeable and has to be compensated

$$\delta = \frac{\int B_{rem} dl}{B\rho} = \frac{0.75 \cdot 10^{-4}}{13.7 \cdot 10^{-3} \cdot 10/3} = 1.6 \cdot 10^{-3}$$

Beam extraction through a triplet


- The best among optics with tunes $Q_x=1.3$, $Q_y=2.3$ has been chosen for study, with edge angles of $\pi/9$. For the same edge angle the ejection through triplet is less efficient in case of tunes $Q_x=1.45$, $Q_y=2.45$
- Positive: small kicker angle of 30 mrad
- Negative: 32 mm only needed for circulating beam (4σ) with ε_x=50 π mm mrad (ring acceptance), and 2 · (50 to 60) mm needed for ejected beam
- Negative: 1 to 3 quadrupoles of special design needed (wider aperture-> bigger length), extra power supplies, 2 extractions in ELENA foreseen-> double problems

25 January 2012 CERN

Beam extraction through central defocusing quadrupole

- Optics with 3 quads in each of 4 straight section was chosen. The edge angle is $\pi/11$, tunes are $Q_x=2.3$, $Q_y=1.3$
- Modest kick of 55 mrad required, and trajectory deviation at the exit of quadrupole is 36 mm
- About 20 mm required for circulating beam (4 σ) with ε_x =50 π mm mrad (ring acceptance), and 2 · 45 mm needed for ejected beam
- Negative: one quadrupole of special design with big aperture needed, extra power supply, 2 extractions in ELENA foreseen -> double the problems

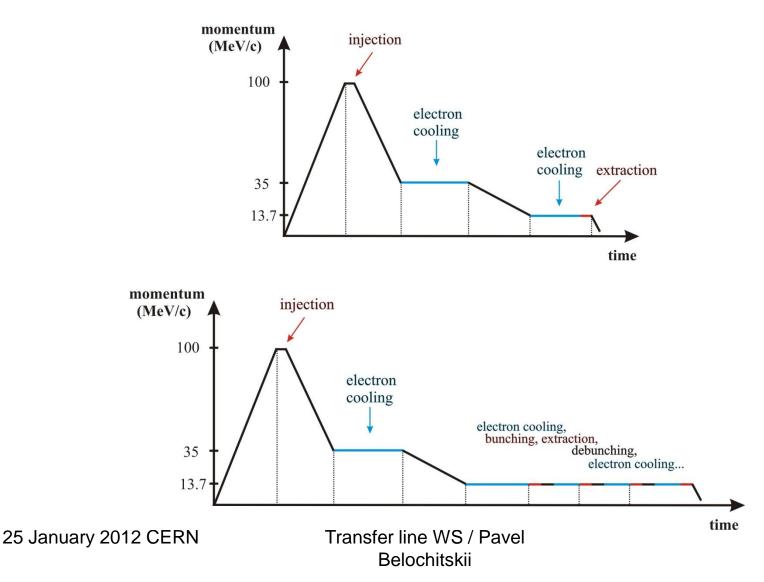
Comparison of two extraction schemes with magnetic kicker and septum

Extraction in a short straight section:

- doesn't depends on optics
- needs less space
- Needs strong kicker

Extraction through the quadrupole(s):

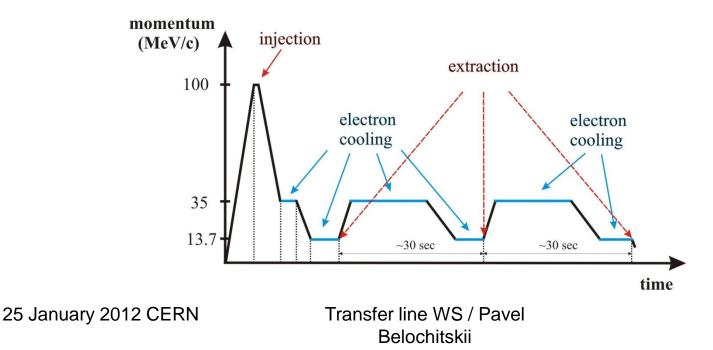
- requires much weaker kicker strength
- Requires much bigger quadrupole aperture and, as a result, bigger length
- Requires special magnet design
- Cost of magnet system increased
- Makes optics set up more complicated


Extraction in a short section with strong kicker is proposed

How we extract from ELENA more than one bunch?

- One can't extract more than 1 bunch during one turn due to limitation on kicker flat part duration (400 nsec) and speed of switching between experiments
- The limiting factor for the next extraction is recharging of kicker capacitor, it takes up to 100 msec.
- Two scenario to continue extraction process: a) beam is keeping bunched until kicker is ready for the next fire, one needs about 100 msec, 200 msec or 300 msec to extract 2, 3 or 4 bunches (synchronization between RF and kicker takes 20 to 30 msec) or b) beam is debunched, cooled again and rebunched after each extraction
- For the first option a) relatively small beam emittance blow up due to residual gas scattering is expected, b) IBS-caused emittance blow up occurs during beam bunching and keeping on extraction plateau
- Could one make fast emittance measurement right before extraction? This is the only way to estimate danger from IBS
- Both options have to be foreseen from the point of view of control system: long beam stay on extraction plateau and debunching/cooling/bunching procedure

25 January 2012 CERN


How we extract from ELENA more than one bunch?

23

We can deliver to one experiment 3 bunches during one AD cycle

- In case one or few of the experiments uses accumulated pbars during long time (i.e.15 min)
- In case one of the experiments has requirements to beam which differs from other requests (i.e. ASACUSA needs shorter bunch length, but accept relatively big emittances)
- In case one need to test machine parallel with physics

Could we make extraction with electrostatic kicker?

Motivation:

- To extract more than one bunch at the time (longer kicker flat part required)?
- Absence of the kicker remanent field

Important:

- How fast could one make switching between experiments with electrostatic bending magnet(s)?
- Do we have other advantages of electrostatic kicker w.r.t. magnetic kicker?

Crossing of injection and extraction beam lines

Special care:

- Choice of the best point to make crossing
- Constraints on equipment location in both lines
- Extra pumping in AD to ELENA transfer line, in a part which is inside of AD Hall

Electrostatic lines

- completely new area for AD/ELENA team...
- at least 5 experiments to be served (ASACUSA, ALPHA, ATRAP, AEGIS. GBAR)
- Several tens of meters total length
- Must be shielded
- Acceptance about 15 pi mm mrad (to be confirmed)
- Focal point with small beam size (about 1 mm) at the end of line
- Flexible system for switching beam between experiments
- Stable parameters of delivered beam

Your experience is welcome!

Thank you for attention!

25 January 2012 CERN