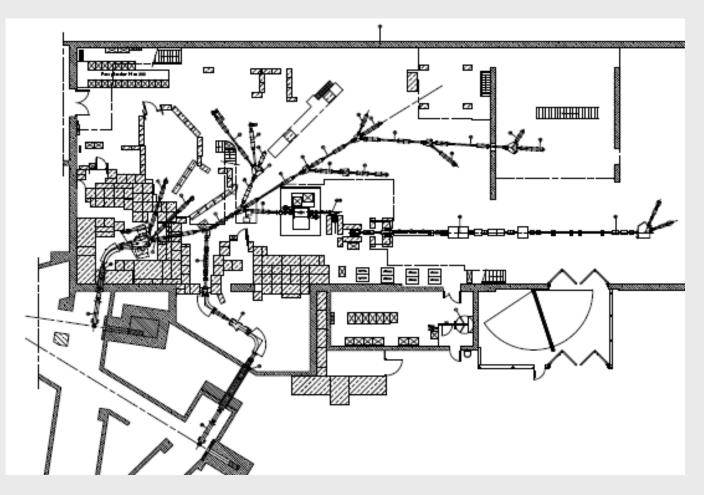


ISOLDE Powering and ELENA

David Nisbet

ELENA Powering 24/1/2012



- Introduction powering the ISOLDE complex
- DC Systems v pulsed systems
- Powering Bends, Quads and Steerers
- Controls and diagnostics
- Estimate of ELENA requirements
- Conclusions

Machine layout

Introduction - powering the ISOLDE complex

- The ISOLDE complex, with many beam lines, is a diverse user of beams, beam treatment and experiments
- Currently the entire complex uses >500 systems under the management of TE-EPC
 - Grouped into >50 different types
 - Range from [10V to 60kV] and [500uA to 1kA]
- The many beam treatments in the complex leads to a large diversity of equipment (see Fredrik Wenander presentation)
 - Also due to the historical 'growth' of the complex through CERN and non-CERN developments

The power converter types at ISOLDE

Converter Type	ISOLDE	REXHSOLDE	Grand Total
24VBAT (±150A, ±24V)	1	1	1
30/730-2 CH1 [±0.03A, ±1300V]		2	2
50/750-2 CH2 (±0.05A, ±1500V)		2	2
30/730-ZEX CH1 [±0.03A, ±730V]		2	2
50/750-2EX CH2 [±0.05A, ±750V]		2	2
590 ZCH (±0A, ±7500V]		4	4
390 CH Neg [±0A, ±7300V]		2	2
390 CH Pos (±0A, ±7300V)		2	2
6018-4 CH1 [±0.01A, ±500V]		2	2
6018-4 CH2 (±0.01A, ±500V)		2	2
6018-4 CH3 [±0.01A, ±500V]		2	2
6018-4 CH4 [±0.01A, ±500V]		2	2
601C-2 CH1 [±0.05A, ±500V]		2	2
601C-2 CH2 [±0.05A, ±500V]		2	2
700V [±04, ±700V]	108	8 10	118
AF99032 [±60A, ±20V]		1	1
D-15V-1000A [±1000A, ±15V]	:	2	2
D-13V-600A [±600A, ±13V]	:	2	2
D-300V-5A [±5A, ±300V]	4	4	4
D-30V-100A [±100A, ±30V]	4	4	4
D-52V-30A [±104,±30V]		2	2
DC24-D1000 [±0.0005A, ±1000V]	30	2	32
DC24-D3500 [±0A, ±3500V]	143	8 24	172
GAN 960715-1 [±0A, ±200V]		4	4
HCE 35-12500 [±0.002A, ±-12500V]		1	1
HCE 35-2000 [±0.015A, ±-2000V]		1	1
HCE 35-20000 (±0.001A, ±20000V)		2	2
HCE 7+2000 [±0.003A, ±2000V]		2	2
HCE 7+3300 [±0.002A, ±3300V]		3	3
HCE 7+6500 (±0.001A, ±6500V)		1	1

1 2 10 21 10 2 1 10 2 22 22 10 2	2 2 1 2	2 2 1 2 2 11 21 10 2 1 10 2 2 2 2 2 2 2
2 10 21 10 2 1 10 2 2 22 22 10	1 2	1 1 2 11 21 10 2 1 10 2 2 22
2 10 21 10 2 1 10 2 2 22 22 10	2	1 2 2 11 21 10 2 1 10 2 2 22
2 10 21 10 2 1 10 2 2 22 22 10		2 2 11 20 2 1 10 2 1 10 2 2 22
10 21 10 2 1 10 2 22 22 10		2 11 21 10 2 1 10 2 22
10 21 10 2 1 10 2 22 22 10	1	11 21 10 2 1 10 2 2 22
21 10 2 1 10 2 2 22 10	1	21 10 2 1 10 2 22
10 2 1 10 2 22 22 10		10 2 1 10 2 22
2 1 10 2 22 10		2 1 10 2 22
1 10 2 22 10		1 10 2 22
10 2 22 10		10 2 22
2 22 10		2
22 10		22
10		
		10
2		
		2
	16	16
	16	16
1		1
	1	1
2		2
	22	22
4		4
	2	2
	4	4
	6	6
	1	1
	1	1
		3
3		1
3	1	
	3	1 1

DC electrostatic powering

Recommendation

- Minimise the flavours found in the accelerator
- Cheaper; easier to operate and maintain;
- As the systems are DC
 - Very low power is required
 - Systems are physically small -> up to 30 per rack

Design examples

 from left:
 HCE 7 - 6500
 HCE 7 - 20000
 HCE 35 - 35000

 6,5kV / 1 mA
 20kV / 0,3 mA
 35kV / 1 mA

HCE 350 - 2000 2kV / 150 mA

ELENA Powering 24/1/2012

DC electrostatic powering

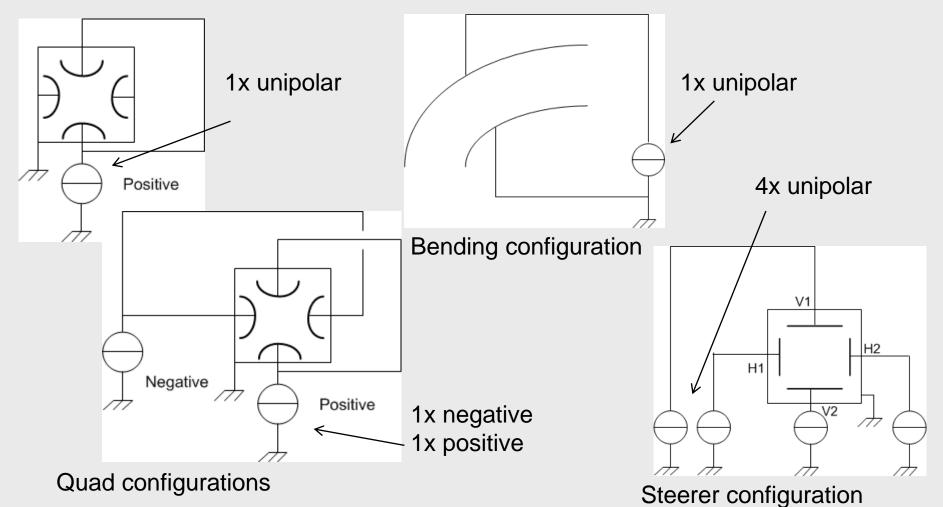
The power converter types used for ISOLDE transfer lines and recommended for use on future projects

	Machine		
			Grand
Converter Type	ISOLDE	REX-ISOLDE	Total
HCE 35-12500 [±0.002A, ±-12500V]		1	1
HCE 35-2000 [±0.015A, ±-2000V]		1	1
HCE 35-20000 [±0.001A, ±20000V]		2	2
HCE 7+2000 [±0.003A, ±2000V]		2	2
HCE 7+3500 [±0.002A, ±3500V]		3	3
HCE 7+6500 [±0.001A, ±6500V]		1	1
HCE 7-12500 [±0A, ±-12500V]		2	2
HCE 7-3500 [±0.002A, ±-3500V]		2	2
HCE 7-6500 [±0.001A, ±-6500V]		2	2
Grand Total	0	16	16

If the proposals don't fit with the accelerator needs

- Straight forward to extend up to 35kV and 35W
- Try to standardise!

http://www.fug-elektronik.de/webdir/PDF/e/e_datasheet_HCE.pdf


Pulsed electrostatic powering

- Additional constraints on the choice of power converter
 - Power source needs to sink and source current quickly
 - Peak current and power is much higher
 - The voltage rise and fall time is a critical parameter
 - Not available 'off the shelf' from commercial suppliers
- EPC currently have very few pulsed systems in the ISOLDE complex
- Kickers are required for ejection from ring and into experimental areas
- These are generally the responsibility of the TE-ABT group
 - Check if the ABT group already have appropriate technology
- ELENA will probably need pulsed quads to compensate dipole effects
 - Typical solution would switch rapidly between 2 DC sources using semiconductor switches; other solutions can be envisaged.
 - Synergy with kicker technology? Otherwise some development required.

Powering bends, quads and steerers

Preferred configurations if permitted by optics:

Controls and diagnostics

- For DC systems, we currently use PLCs in the ISOLDE complex
 - Provides a slow control and acquisition solution for general monitoring
 - Acquisition of output voltage and power system state is generally sufficient
 - Specification of setpoint and measurement performance? 10⁻⁴ resolution and 10⁻⁴ absolute ?
 - Acquisition of Pulsed Systems
 - In addition to the slow (PLC) control, triggers and fast acquisition are required
 - Standard solutions available from the CO group would typically be used
 - Check also synergies with the TE-ABT group

An ELENA TL shopping list for power

Function	Machine Qty	PC Qty	19" Racks
Quads	~20	~20 - 40	~2
Bends	~6	~6	~0.25
Steerers	~20	~80	~3
Pulsed	~5	~10	~1

Approx budget: 500 kCHF

ELENA Powering 24/1/2012

Conclusions

- Simple approach is best for the many small DC power sources required
 - Only a few types need to be considered compared to ISOLDE complex
 - Straightforward to extend to 35kV for modest cost
- Pulsed approach needs much more care
 - Load capacitance, switching times, diagnostics
 - Possibly the TE-ABT group have a solution ready to go?

Consideration should be given to diagnostics requirements

Acquisition rate and acquisition performance (eg 10⁻⁴ absolute measurement performance required?)

