Acknowledgements: all material is from K. Foraz, J-P Tock, F. Savary and others References: Second LHC Splice Review, November 28-30, 2011

> https://indico.cern.ch/conferenceDisplay.py?confld=157231 R2E review, November 21-24, 2011 http://indico.cern.ch/conferenceDisplay.py?confld=157386

MIRKO POJER

LHC 2013/2014 PLANNING & OVERVIEW OF MAIN ACTIVITIES OP DAY 2012

SHORT AND LONG TERM

- Preliminary powering tests at the end of 2012 run (find other possible limitations)
- 20 months from Beam OFF to Beam ON
 - Including powering tests, warm-up, cool-down
 - Total duration agreed between _ experiments and machine
 - LHC machine: 20 months
 - ALICE: 12 months (up to 15 months)
 - ATLAS: 15 months (but from April '13) ٠
 - CMS: 20 months
 - LHCb: 12 months
- Beam back somewhere in July 2014
- No Xmas break in 2014???

KEY DRIVERS OF LS1

- Priorities for the LHC interventions:
 - P1: Beam (safely) to 6.5-7 TeV, nominal performance
 - Superconducting circuits consolidation
 - P2: Reliable operation
 - R2E relocations
 - maintenance
 - P3: others
- Resources are attributed according to these priorities
- Procurement contract and resources recruitment is done accordingly
- What has to be done to consolidate the superconducting circuits:
 - Main splices in the arc
 - DFBA circuits
 - Replace cryo-magnets
 - Consolidate connection cryostats
 - Other activities not linked directly to SC circuits: PIMs, Helium level gauges, Y lines, DN200, ...

Mirko Pojer – LHC 2013/2014 planning & overview of main activities – OP Day

WHY CONSOLIDATING THE SPLICE?

Mirko Pojer – LHC 2013/2014 PLANNING & OVERVIEW OF MAIN ACTIVITIES – OP DAY

FRI

1/26/2012

SPLICE CONSOLIDATION: GLOBALLY

Cryogenics : 18 weeks per cryoplant+ Maintenance of all the equipment: CV, EL, RF...

1/26/2012

CÉRN

A BEAULTERS

SPLICE CONSOLIDATION: THE WORK-FLOW

70

A & & 0((() 400)

INTERCONNECTION OPENING

• Open interconnections for:

Statill - And

- Consolidation of main splices
- Installation of DN200
 - Partial opening first
- Recovery of RP samples (LHC-LI-EC-0001)
- Special interventions

pass-through 3mm holes, fixed with stainless steel cable to X-line. It shall be positioned between the two beam lines. Inside there are: Dosimeter, collar coil sample, superconducting cable sample.

Half yoke samples, fixed with stainless steel threaded rod (M10x100mm), 3 washers and 3 nuts.

OPEN M SLEEVES

QA/QC check immediately after removal of old insulation:

• Geometry (alignment - gaps) by go/no go gauge and visual aspect

• R-measurements

SOLDERING

BB MACHINING

THE SHUNT

3 Venting

holes

- Functional requirements as per EDMS #1171853
 (https://edms.cern.ch/file/1171853/1/LHC_cons_funct_spec_V0.pdf),
 "Specification for the consolidation of the LHC 13 kA interconnections in the continuous cryostats"
- 3390 splices in the RB circuits (LHC main dipole magnets)
- 6780 splices in the RQ circuits (LHC main quads)
- 3390 x 4 = 13560 dipole shunts for RBs
- 6780 x 2 = 13560 quadrupole shunts for RQs
- The main features of the shunt are
 - Copper annealed at 400 °C for 2 hours to maximize RRR
 - Rounded edges to avoid tendency to arc ignition
 - One hole for a pilot T-probe to steer the T cycle
 - 3 venting holes and transverse/longitudinal grooves at the back side to facilitate flow/migration of solder on the entire contact surface
 - 2 holes of Φ 7 mm for filler material (Sn60-Pb40)

SHUNT INSTALLATION

Stoff (1 - met

QC AFTER SHUNT INSTALLATION

- Visual inspection, photos
- R_RT-top-side

10 6-01(01-00)

• R_8/R_16

CLOSE INSULATION

A A BEAULIER DATE

QC AFTER SHUNT INSTALLATION

• Visual inspection

S. Galler - Ann

- Geometrical check
- Photos

Define ELQA procedures, sequence, constraints

- Before / After M sleeves welding
- Length of the chain ?
- Non-conformities / specificities (spool pieces)
- After consolidation : @warm, @ cold,...

CÉRN

Mirko Pojer - LHC 2013/2014 PLANNING & OVERVIEW OF MAIN ACTIVITIES - OP DAY

A

A typical day

Shift 1 for production and non-interfering test

>Shift 2 for tests on chains of magnets, preventing other activities

➢Night for transport

≻5/7 days

BS DUUU - AN

1/26/2012

PRODUCTION RATE

4 weeks for each activity so 53 IC/week Dimensioned to 60 IC/week: 10% margin Remember : Series installation at 30 IC/week !

-2	wk -1	wk 1	wk 2	wk 3	wk 4	wk 5	wk 6	wk 7	wk 8	wk 9	wk 10	wk 11	wk 12	wk 13	wk 14
			Opening W						50 Magnet to m	nagnet electrical intercon	nect 8-1				1800
b	ellows ins	pection & p	rotection, c	ryo-therm	ometers				45 Magnet to m	nagnet electrical intercon nagnet electrical intercon	nect 7-8		1		- 1600
			(Cutting PIN	1s				40 Magnet to m	nagnet electrical intercon nagnet electrical intercon	nect 3-4 nect 5-6				1400
									35 Magnet to m	nagnet electrical intercon	nect 2-3				- 1200
			Endos	scopy bean	n lines				Magnet to m	nagnet electrical intercon	nect 6-7				
									Magnet to m	nagnet electrical intercon	nect 1-2				- 100
				Repair, r	reinstall & t	tack PIMs			Total magne	t to magnet electrical int	erconnect				
									20				301C/week		- 800
			Cut	ting M slee	eves										- 600
			Removal o	f IC splices	insulation				15						- 400
									10						
			Q	C, R8, busb	ar resistan	ce			5						- 200
											11 IC/week				
				Busbar	surface ma	achining			0 2.5 IC/w	eek	ah ah ah ah	NO NO	Countro		
									Shuff 8560 80CT BNOW 80	Jecc 8.1an 8. Febre 8. Marc 8. A	Bransha Blunc Blunc Blunc	8.5e0 8.0	Courte	зу Р ге	SId
					Solder shur	nt I		1							
				Decelder/	racaldar/ch	untenliser			Heles and						
				Desolder/	resolder/sh	iunt splices			Holes and						
					Spr	pols			Holes and	d NC					
					QC splic	es/shunts									
					Mountin	ig and QC in	sulation								
A L				2 . .		ELQA		57 J 1 1 1		F B	ertinel	li @ 1 ^s	^t splice	es revie	W
N	1/2	26/2012			Mirko Poj	er – LHC 2	013/2014	PLANNING	& OVERVIE	W OF MAIN	I ACTIVITIES	– OP DAY			18

BS FILLE AN

REPLACE CRYOMAGNETS

High internal splice resistance

• 13 (+2?) dipoles will be replaced, plus 4 quadrupoles

	CRYO-MAGNETS TO BE REMOVED DURING LONG SHUTDOWN 1																
	Тур	e	Magnet	Problem	Input	EDMS	Slot	IC Up	IC Down	Sector	To be changed	Remarks 1	From LMF	Deadline	Location	Activity	Remarks 2
		4	Ψ.	v	¥	Ŧ	-	-	-	¥	4	•	Y	¥	v	Y	¥
1	Dip	BR	<u>2387</u>	High Resistance	Zinur		LBBRD.33R1	QBBI.B33R1	QBQI.33R1	12	Yes	Res. 20.4∏Ω		26/10/12			
2	Dip	AR	<u>2373</u>	High Resistance	Zinur		LBARB.30R1	QBBI.B30R1	QBQI.30R1	12	Yes	Res. 19.8∏Ω		26/10/12			
3	Dip	BR	<u>2395</u>	High Resistance	Zinur		LBBRD.15R1	QBBI.B15R1	QBQI.15R1	12	Yes	Res. 17.0∏Ω		26/10/12			See also NCR 1004184
4	Dip	BR	<u>2377</u>	High Resistance	Zinur		LBBRA.33L2	QBBI.B33L2	QBBI.A33L2	12	Yes	Res. 16.2∏Ω		26/10/12			
5	Dip	AR	2372	High Resistance	Zinur		LBARB.29L2	QBBI.A29L2	QBQI.29L2	12	Yes	Res. 15.4∏Ω		26/10/12			
6	Dip	AR	2413	QH damaged	ELQA	1004191	LBARA.22R1	QQBI.21R1	QBBI.A22R1	12	Yes	Will be replaced by 2171		26/10/12	SMA18		
7	Dip	BL	<u>2357</u>	High Resistance	Zinur		LBBLA.23R2	QQBI.22R2	QBBI.A23R2	23	Yes	Res. 28.1∏Ω		26/10/12			
8	Dip	AL	<u>2353</u>	High Resistance	Zinur		LBALA.15L3	QQBI.15L3	QBBI.B15L3	23	Yes	Res. 24.1∏Ω		26/10/12			
9	Dip	AL	<u>2336</u>	High Resistance	Zinur		LBALA.25R2	QBBI.A25R2	QBBI.B25R2	23	Yes	Res. 19.5ΠΩ		26/10/12			
1	Dip	AL	<u>2138</u>	QH damaged	ELQA	1061212	LBALA.31R4	QBBI.A31R4	QBBI.B31R4	45	Yes	Will be replaced by 1061		26/10/12	SMA18		
1	L Dip	BL	2214	QH damaged	ELQA	<u>961338</u>	LBBLC.17R4	QBBI.B17R4	QBQI.17R4	45	Yes	Will be replaced by 1132		26/10/12	SMI2	Stripping	
13	2 Dip	BR	<u>1007</u>	Breakdown at 1.9kV	ELQA	1060444	LBBRA.30R7	QBBI.A30R7	QBBI.B30R7	78	Yes			26/10/12			
13	B Dip	BR	<u>2007</u>	QH damaged	ELQA	<u>1017215</u>	LBBRA.21L8	QBBI.B21L8	QBBI.A21L8	78	Yes			26/10/12			Older NCR
14	4 Quad		<u>512</u>	High Resistance	Zinur		LQTAB.7R3	QDQI.7R3	QQBI.7R3	34	Yes	Res. 26.9∏Ω	30/06/12	26/10/12			LMQTF
1	5 Quad		<u>243</u>	No MQS	BE/ABP	<u>103939</u>	LQATD.23R3	QBQI.23R3	QQBI.23R3	34	Yes	Will be replaced by 233		26/10/12	180	To cryostat	LQASB.23R3
1	5 Quad		<u>55</u>	No MQS	BE/ABP	<u>103939</u>	LQATD.27R3	QBQI.27R3	QQBI.27R3	34	Yes	Will be replaced by 230		26/10/12	SMI2	Cryostating	LQASB.27R3
1	7 Quad		<u>606</u>	Warm corrector	BE/ABP	831927	LQNMA.5L8			78	Yes		30/06/12	26/10/12			
1	B Dip	AL	2438	Wrong Beam Screens	VSC	985318	LBALA.26R3	QQBI.26R3	QBBI.A27R3	34	Probably	Input from BE		26/10/12			
1) Dip	BL	2252	Wrong Beam Screens	VSC	985318	LBBLA.32R3	QBBI.A32R3	QBBI.B32R3	34	Probably	Input from BE		26/10/12			
E	RN	y				at (c)			-				-200

1/26/2012

THE CONNECTION CRYOSTAT

- The plan is :
 - Measure and if necessary consolidate the CC 11L8
 - Consolidate the CC in 11L3 & 11L1
 - Measure / inspect all the CCs to check no displacement

INSTALLATION OF DN200

To be installed during LS1 in 23, 45 (part), 78 & 81 About 600 units

CÉRN 1/26/2012

OTHER INTERVENTIONS

- <u>Consolidation of SAM Helium level gauges and DN160</u>
 - It is planned to consolidate the 2 remaining ones: Q6R2&L8

- <u>Repair of leaking Y-lines</u>
 - It is planned to consolidate

the 2 known cases (S78:17-19R7 & S81:19-22R8)

- PIMs (# 45 to be replaced)
 - Buckled during warm-up \approx 18 (RF ball test)
 - Heavily damaged : ≤ 10
 - Preventive replacements : Arc extremities 18/32 in baseline

DFBA SPLICE CONSOLIDATION

The cryogenic electrical feedboxes of the LHC (DFBs)

- 16 DFBA : powering the arcs
- 23 DFBM: powering of standalone magnets in LSS
- 5 DFBL : powering of the superconducting links
- 8 DFBX : powering the triplets

52 DFBs, 39 variants > 1400 current leads

Many variants

• No spare of complete DFB -> repair or rebuild

• High current cable connection done as in the machine

- All but 2 can be consolidated in situ (study ongoing for the 2 singularities)
- Between 50 and 60 weeks for consolidation

TERM

THE WHOLE PICTURE

6

□ Cryo-dipole Δ SSS

- **A** High inner splice
 - Highest leak
 - Electrical integrity issue

5

- Critical reversed beam screen
- **A** Beam optics
 - SAM (He, DN160)
- Y-lines repair
 - CC Consolidation / Inspection
 - DN 200 installation
 - Triplet braid (End of LS1 for rad prot) Circuit and splices issues

Spread all around : work on leaks, PIMs,

 \overline{I} Goal : Special interventions completed before the train arrives : To be checked

3

CÉRN

7

ORGANIZATION CHART

1

Long Shutdown 1 - F. Bordry

Project Office M Pojer (?) #11								
-Radiation protection	-Coordination with							
-Safety	Survey, BLM, Instrumentation, Transport, LS1 planning, QPS, cryogenics,							
-Access	Test teams on a chain of IC							
-Pressure test	-Reporting tools							

QUALITY ASSURANCE

- Each of the 10170 LHC main interconnection splices needs to be controlled <u>before</u> and <u>after</u> consolidation
- Each shunt needs to be controlled separately
- R-8 acceptance threshold values for existing splices
 - Redo a splice when additional R-8 exceeds 5 μ Ω (dipole R-8>10.6 μ Ω; quads R-8>14.3 μ Ω) [5 μ Ω excess resistance corresponds with a non-stabilised cable length of about 4 mm; the safe currents for a splice with 4 mm non-stabilised cable are 17.2 kA and 15.4 kA for quadrupole and dipole splices, respectively - A. Verweij and D. Molnar]
- Geometrical acceptance criterion and test
 - to be able to put shunts without machining too much Cu from the existing busbars and splice profiles
 - to be able to put the splice insulation on the consolidated splice (maximum misalignment over the 150 mm: horizontal ±3mm, vertical ±5mm, EDMS Nr. 1171853)
- Redo "new" splices that will be produced during LS1 when:
 - R-8_{dipole}>7.6 $\mu\Omega$; R-8_{quad}>12.3 $\mu\Omega$.
- QC on shunts: a defect area of 9 × 13 mm², i.e. 52% of overlap area (neglecting the hole) is detectable by an additional

R_RT-top-side of up to 0.7 $\mu\Omega$.

1/26/2012

1/26/2012

R2E ACTIVITIES

4 critical areas: UJ56 --> displacement of all electronics (safe room) (CPS01 = P5)UJ14/16 --> displacement of all electronics in ULs R.572, R.58 R59, R61 Point 7 --> displacement of remaining electronics of UJ76 UX85 UW45 <u>UX451</u> R571 RE62 CMS UJ561 Point 4 Point 5 Point 3.3 portes de secteurs inter-sites Point 6 P/W32 ortes de secteurs délimitant la zone RF accès vérouillés ACCESS contrôle CCC ortes de secteurs délimitant les zones de coordinations LHC/SPS UD68 Point 3.2 ACCESS accès non vérouillés UP68 portes de secteurs délimitant la zone Dump accès vérouillés ACCESS délégation expérience Radiation Level toumiquets RE68 Medium High personnel Unknown Low RE2 <u>R69, R71</u> PAD Unknown R28 sas personnel YCPS01 = R74 No MAD Point 7 Electronics Point 2 sas matérie RE72 Safe ALICE RA2 Critical R74. R76 Point 8 RB2 SPS LHC'B R79, R8 R78, R772 PX 84 RB2 Point Point 1.8 <u>UJ24</u> R21, R19 PX16 RA23 UJ18 RI171 CPS01 = R771 RH23 PMI2 R12 R11. R8 UX15 RB14 /TI12 R1131.R112 RT12 /RE12 RE88 USA15 TNB4 ATLAS https://r2e.web.cern.ch/R2E/ Mirko Pojer - LHC 2013/2014 PLANNING & OVERVIEW OF MAIN ACTIVITIES - OP DAY 1/26/2012

CERN

2 D ((() - m)

4 ducts Ø400mm (16m long)

Courtesy J. Crespo Bisquert

UJ56

CÉRN

5 ducts Ø350mm (2m long)

20 ((0° - m)

Courtesy J. Crespo Bisquert

SAFE ROOM IN UL55

POINT5 DURING XMAS BREAK

1/26/2012

Mirko Pojer – LHC 2019/20014@1/ahnings@coverview of main activitie330P Day

• Definition in progress

FR

1/26/20

• Hot discussions around the safe room

CTIVITIES – OP DAY

Wall to be demolished

34

- Shielding installation during Xmas break
 - UJ16

• UL16

1/26/2012

R2E & DRAFT GENERAL SCHEDULE

A BARNER PROP

AFTER THE HIGGS BOSON

SPARE SLIDES

1/26/2012

Bachill and

Mirko Pojer – LHC 2013/2014 PLANNING & OVERVIEW OF MAIN ACTIVITIES – OP DAY

Cole:

WHAT HAPPENED IN 2008

Some images

Redo splices in the segments with high 1.9 K excess resistance

CÈRN

QUALITY ASSURANCE

Quality Assurance

R Ostojic #39

-Electrical QC: C Scheuerlein #17 See presentation
-Welding QC: JM Dalin
Operators, tooling, procedures qualification
QC during production (Visual inspection)
Off-line samples
-Beam vacuum QC: C Garion
Protection and inspection of Bellows, PIMs
Endoscopy of beam lines
-Open/close IC QC: D Bodart
Visual inspection
Protection of critical surfaces
-QA manager support
Tooling, inspection, reporting

The QA manager will:

Coordinate QA activities

□Ensure that an adequate level of Quality Assurance is applied, especially in terms of traceability (MTF) and documentation

Ensure a timely management of the nonconformities, minimizing the impact on the overall schedule

Ensure that production parameters are analysed in time to give an early warning in case of drift.
 Identify as early as possible critical issues that could jeopardize the consolidation work

In total about 300 000 room temperature resistance measurements need to be done! More than 20000 photographs need to be taken only for the main interconnection splices.

There are 39 variants of DFBs (including DFBXs): no spare complete DFB -> repair or rebuild

Current lead replacement: warm-up + 1 week repair + cool-down

52.5 days (cf. P. Cruikshank, Cham. 2010) + 5 days = 57.5 days (8 weeks)

Estimated times for workshop repair

Operation	DFBM/L	DFBA (repair)	DFBA (rebuild)			
			Sector	New DFBA		
Warm-up	2 weeks (local warmup)	4 weeks (sector warmup)	4 weeks (sector warmup)			
Disconnect + transport	1 weeks	3 weeks	3 weeks			
Disassemble DFB + repair + Reassemble & test	8 weeks	12 weeks	-	6 months (parallel assembly)		
Transport + reconnect	4 weeks	6 weeks	6 weeks			
Vacuum + ELQA	1 week	3 weeks	3 weeks			
Cooldown (+ tuning)	2 weeks	4 weeks	4 weeks			
ELQA + HWC	1 week	3 weeks	3 weeks			
Total	18 weeks (5 months)	35 weeks (9 months)	41 weeks (10 months)			

For DFBX similar to DFBA except local warm-up possible. In situ repair could be possible for DFBXs in some cases

A. Perin, CERN, TE-CRG, 29 November 2011

1/26/2012

Pre-folded polyimide foil insulation Filling envelopes Lower insulation piece introduction Upper insulation piece installation Clearance volume filling inside the envelope

Reinforcement of the present bus bar insulation Blockage of the main 13kA interconnects and of the shunt Simple and easy assembly accommodating large variation geometry

Courtesy H. Prin

1/26/2012