

SHORT CIRCUIT ENERGY

CONSIDERATIONS USING THE EXAMPLE OF A PULSE STEP MODULATOR BASED HVPS

CWRF 8. – 11. May 2012 André Spichiger, Michael Bader, Marcel Frei

SHORT CIRCUIT ENERGY

Content

- **▶** Motivation: Why this topic?
- **▶** Tube Specifications
- How can the arc energy be measured or calculated
- HVPS Stored Energy
- Energy dissipation / arc energy
- ▶ Reduction of arc energy
- **▶ Inverse Voltage- System**
- Summary

MOTIVATION

Why this topic?

- Questions during bids and acceptance tests
- ▶ Increasing filter / ripple requirements → what are the limitations?
- Frequently discussed issue: Cable length between the supply and the tube
- Important for a safe tube operation
- ▶ To give an idea / feeling about the figures

SPECIFICATIONS

What is the energy dissipated in a load (tube) arc?

Arc energy specifications

- ▶ Usually in the region of 10..20 Joule
- ▶ 15 Joule corresponds to 15 bars of chocolate lifted 1m.

VERIFICATION

VERIFICATION

Measuring the arc energy

- Simple test with a wire as proposed in tube Datasheets
- Using a real fuse I2t value
- Accurate Current measurement is possible (e.g. pearson coil, coaxial shunt)
- Accurate Arc Voltage measurement is not easy to do
- ▶ We proposal: Measuring the current and post-calculating the energy dissipation with a defined arc Model

Calculating the arc energy

- ▶ Arc Model Proposal for vacuum tubes: Series connection of DC Voltage source 100V and Resistor 200mOhm.
- Simulations provide good basis for later verification
- System optimization can be easily done in simulations

BASIC MODEL

STORED ENERGY

- ▶ Basic model with a 2 pole RLC filter network
- ▶ System parameter 35kV / 3.5A, a rather small system.
- ▶ ARC energy specifications 15 Joule
- Stored energy is much higher

Parameter	Value	Stored Energy
Filter Inductor	16 mH 5 mH	0.1 Joule / 6 Joule 0.03 Joule / 15 Joule
Filter Capacitor	200nF	123 Joule
High Voltage Power Supply	60 modules 57 Joule / module	3420 Joule
Cable	100 pF / meter	0.06 Joule / meter

ENERGY DISSIPATION

- Where is the energy dissipated in case of a short?
 - ▶ What happens with the stored energy in the filter QL QC?
 - Simulation model parameters:
 - ▶ Turn off delay 10 us
 - Voltage drop in the diodes: 2V / Diode
 - Short circuit model: 100V / 0.2 Ohm

SIMULATION MODEL

SIMULATION: 5 MH FILTER INDUCTANCE

SIMULATION: 5 MH FILTER INDUCTANCE

SIMULATION: 16 MH FILTER INDUCTANCE

SIMULATION: 16 MH FILTER INDUCTANCE

SIMULATION: WITH CABLE

100 METER CABLE ADDED TO THE SIMULATION

SIMULATION: WITH CABLE AND SNUBBER

SIMULATION: WITH CABLE AND SNUBBER

ENERGY DISSIPATION SUMMARY

- Where is the energy dissipated in case of a short?
 - ▶ Filter Capacitor:
 - Almost everything is dissipated in the filter resistor
 - ▶ Filter Inductance:
 - ▶ Before shutdown of the PSM the L is charged → Energy
 - ▶ After PSM shutdown the energy is dissipated in the short and the diodes of the PSM
 - Cable snubber are reducing oscillations and Arc Energy

OPTIMIZATION

How can the energy be reduced, measures?

- Filter can be optimized according operating point.
- ▶ More complex filters instead a simple RLC network.
- ▶ Tradeoff: Filter vs. Energy
- Using Cable Snubbers for long cables
- ▶ Thomson patented Inverse voltage Operation Mode

19

- ▶ Application example: KGP5 Test stand for Tubes
 - ▶ 160 kV / 3.2 MW CW
 - Higher power in pulsed mode
 - ▶ 5 us Rise time
 - Arc energy can be set between 2 Joule and 20 Joule
 - This specifications required new solution:
 - **▶** Inverse Voltage Operation Mode

Principle

Short Circuit Current Simulations

- Green: output current without inverse voltage operation
- ▶ Red: output current with inverse voltage operation

Short circuit Test on Tube teststand

- Adjustable arc energy 2 20J
- Main Issue with IVO was the 20J not the 2J → 2Point Regulation implemented
- ▶ Top Trace:
 - Vout = 102kV; Energy Setting = 2.5J
 - Charge Measured 29mAs (2.9J @100V)
- Bottom Trace:
 - ➤ Two point regulation until energy is reached

Two point regulation for a defined Q

SUMMARY

Summary

- ▶ Bigger capacitors or inductors des not necessarily mean more energy in the arc.
- Considering the whole system is important!
- ▶ Degrees of freedom allow optimization → therefore it is important to know the real requirements.
- May be an iterative process together with the customer.
- ▶ Thomson's Inverse Voltage Supplies can reduce the energy to a minimum.

▶ BROADCAST

THANK YOU

