The Diamond Storage Ring IOT based High Power Amplifier

Morten Jensen on behalf of the SR RF Group

Current Key RF Beam Parameters

Beam Current	300 mA Top up		
Synchrotron Radiation Loss	1.0 MeV (dipoles) to		
Synchrotron Radiation Loss	1.35 MeV (ID dependent)		
Beam Power	405 kW		
Revolution Period	1.873 μsec		
Orbital Frequency	533.818 kHz		
Harmonic Number	936		
Number bunches	600 – 900; hybrid		
Momentum compaction	1.7e-4		
Frequency	499.654 MHz		
Cavity Voltage	1.1 MV (Cavity 1), 1.4 MV (Cavity 3)		
Q _L	2.3 x 10 ⁵ Unmodified		
R/Q	89 Ω Siamon		

RF Systems

Three cavities, each with its own RF amplifier, LLRF and control system

SR RF Systems

HVPSU

DC power supply based on the Pulse-Step-Modulator (PSM) technology now also common place for Klystron amplifiers.

- Fully solid state switch mode PSU with IGBT transistors
- No crowbar
- Common HV supply per system (4-IOTs)
- Separate filament, grid and ION pump supplies
- EPICS control system

Power Combining

Circulator and high power load

Power combinations

# of IOTs	Phase (deg)	Reject load power (kW)	Total output power (kW)
4	0	0	320
3	50	40	200
2 (pair)	90	0	160
1	90	40	40

IOTD2130 Design Features

- 80 kW CW, tested to 90 kW
- Broadcast based
- 400 810 MHz
- High efficiency
- Single output cavity
 - > Simplicity
 - > Improved gain
- Enclosed input and output cavities
 - > Low RF leakage
 - Easy tuning
- Low X-ray leakage

Installation at Diamond

IOTD2130

Design Features

- Direct Water Cooling of Internal Anode
- Solenoid Focussed
 - Integral pole-pieces
 - Low beam interception
- Integrated body & collector
 - Enhances cooling
 - No body current trip

- Appendage Ion pump
 - Continuous monitoring
 - Maintains sound vacuum
- Air Cooled Cavities & Gun
 - External tuning cavities
 - Wide range of adjustment
 - Removeable in situ
- Large diameter Output Ceramic
 - Standard on all e2v UHF IOTs
 - High Purity Alumina

IOTD2130 Design Features

IOT is not a plug-in

Pre-prepare complete assembly for quick IOT replacement Each IOT and circuit can be pre-conditioned Aim to operate the IOTs for 300-500 hrs prior to use on for SR

Three easy tuning controls

Input cavity tuner

Courtesy of e2v

Output coupling adjustment

Output cavity tuner

CW and High Average Power Workshop 2012 - BNL

Transfer Curve

Tuned for 80 kW @ 36 kV

- No saturation @ 80 kW
- Limited by interlock setting (85 kW)

E2V measurements at 90 kW

No change in performance during 2 hrs operation at 90kW 38kV

Parameter	Performance			
i arameter	1 citotillance			
Beam Voltage	36kV	38kV	kV	
Frequency	500	500	MHz	
CW Output Power	90	90	kW	
Beam current	3.8	3.64	Α	
Idle Current	100	100	mA	
Grid Current	2	0.2	mA	
Drive power	468	408	W	
Gain	22.8	23.4	dB	
Efficiency	65.8	66.9	%	

Effect of High Voltage on Gain

- > Reduce ISC trips @ 33 kV?
- > Gain -0.5dB (60 kW)
- > Plenty of drive available in DA to compensate

Effect of High Voltage on Efficiency

Typical IOT power demand 40-60 kW Retains high efficiency and allows easy step up to full power

Effect of Output Coupling on Efficiency

Effect of Filament Voltage on Power

diamond

No indication yet of loss of emission

Some increase in grid current has been observed

Two Cavity Operation with Beam (April '12)

IOT Efficiency 68-70%

Amplifier 3 Output 220-230 kW

IOT 33 Output 60-65 kW

Reflected Power 7-10 kW

Beam Current 300 mA

Amplifier 1 Output Power ~ 170 kW

Beam injection.

Due to non-ideal

Qext of the SC

increasing with

reflected power is

increasing power

cavities the

E2V IOTs

Amplifier Reliability Two systems, 8 IOTs in operation

Steady improvement despite increased power demand

2010: 17 trips in total, 9 IOT trips (mostly new IOTs)

2011: 6 trips in total, 3 IOT

2012: 3 trips, all IOTs (year to date)

On behalf of the RF Group

Morten Jensen

Pengda Gu

Matt Maddock

Peter Marten

Shivaji Pande

Simon Rains

Adam Rankin

David Spink

Alun Watkins

Thank you for your attention

